With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
<h3>What is the surface area of a truncated prism?</h3>
The <em>surface</em> area of the <em>truncated</em> prism is the sum of the areas of its six faces, which are combinations of the areas of rectangles and <em>right</em> triangles. Then, we proceed to determine the <em>surface</em> area:
A = (12 cm) · (4 cm) + 2 · (3 cm) · (4 cm) + 2 · (12 cm) · (3 cm) + 2 · 0.5 · (12 cm) · (5 cm) + (5 cm) · (4 cm) + (13 cm) · (4 cm)
A = 48 cm² + 24 cm² + 72 cm² + 60 cm² + 20 cm² + 52 cm²
A = 276 cm²
With the help of the <em>area</em> formulae of rectangles and triangles and the concept of <em>surface</em> area, the <em>surface</em> area of the composite figure is equal to 276 square centimeters.
To learn more on surface areas: brainly.com/question/2835293
#SPJ1
Answer: C. (-4, -2)
<u>Step-by-step explanation:</u>
First, eliminate one of the variables and solve for the remaining variable:
2x - 5y = 2 → 3(2x - 5y = 2) → 6x - 15y = 6
3x + 2y = -16 → -2(3x + 2y = -16) → <u> -6x - 4y = 32</u>
-19y = 38
y = -2
Next, replace "y" with -2 into either of the original equations to solve for x:
2x - 5y = 2
2x - 5(-2) = 2
2x + 10 = 2
2x = -8
x = -4
x = -4, y = -2
<u>Check:</u>
Plug in the x- and y-values into the other original equation:
3x + 2y = -16
3(-4) + 2(-2) = -16
-12 + -4 = -16
-16 = -16 
Yes. Because both equals 1 whole.
Answer:
5.29 units
Step-by-step explanation:
By Pythagoras theorem:
