The amount, in grams, of N that the sample will contain will be 2.1 grams.
<h3>Stoichiometric mass ratio</h3>
According to the problem. the mass ratio of H and N in ammonia is 4.7:1.
In other words, every 4.7 grams of H in ammonia must have 1 gram of N.
Now, in a particular ammonia sample, 10 grams of H is present.
The amount of N present can be calculated from the standard mass ratio.
4.1 grams H = 1 gram N
10 grams H = x
4.1x = 1 x 10
x = 10/4.1
x = 2.1 grams
Thus, the mass of nitrogen in the ammonia sample will be 2.1 grams.
More on mass ratios can be found here: brainly.com/question/14577772
#SPJ1
I'm not completely sure on this and I apologize if it's wrong, but I believe it's B) Newton's Law.
A) 2H₂(g) + O₂(g) → 2H₂O(l) + 285.83 kJ
Exothermic
B) 2Mg + O₂ → 2MgO + 1200kJ
Exothermic
Answer:
The pH of the substance is 4,06.
Explanation:
The pH indicates the acidity or basicity of a substance. PH values between 0 and less than 7 indicate acidic solutions, 7 neutral and greater than 7 to 14 basic. It is calculated as:
pH = -log (H +)
pH= -log (8.8x10^-5)
<em>pH=4,06</em>
Answer:
Explanation:
Homogeneous mixture is a mixture in which the components of the mixture are in the same proportion throughout any sample extracted from the mixture while an heterogeneous mixture is a mixture in which the components of the mixture differ in term of proportion when different samples of the mixture are extracted and compared.
For example, a sandy water will have some parts (usually the bottom) of the mixture with more sand than other parts of the mixture, hence, it (sandy water) is a heterogeneous mixture. While salty and ocean water has it's salt dissolved in the same proportion throughout the water in the mixture, hence salty and/or ocean water is a homogeneous mixture.
Sandy water can be separated by filtration (i.e using a filter paper to separate the sand from the water when the mixture is poured over a filter paper) while salty and ocean water can be separated by distillation (i.e boiling of the mixture so the water molecules can boil and move through a tube as gas or steam into another container where they are cooled and converted back to liquid or water while leaving the solid salt component of the mixture in the boiling tube).