Answer:
21.6 g
Explanation:
The reaction that takes place is:
First we<u> convert the given masses of both reactants into moles</u>, using their <em>respective molar masses</em>:
- 9.6 g CH₄ ÷ 16 g/mol = 0.6 mol CH₄
- 64.9 g O₂ ÷ 32 g/mol = 2.03 mol O₂
0.6 moles of CH₄ would react completely with (2 * 0.6) 1.2 moles of O₂. As there are more O₂ moles than required, O₂ is the reactant in excess and CH₄ is the limiting reactant.
Now we <u>calculate how many moles of water are produced</u>, using the <em>number of moles of the limiting reactant</em>:
- 0.6 mol CH₄ *
= 1.2 mol H₂O
Finally we<u> convert 1.2 moles of water into grams</u>, using its <em>molar mass</em>:
- 1.2 mol * 18 g/mol = 21.6 g
Answer:
A. It is the work done when a force of 1 newton is applied to an object for a distance of 1 meter
Explanation:
Hydrogen because it only has one electron
Answer:
See explaination
Explanation:
The invariant mass of an electron is approximately9. 109×10−31 kilograms, or5. 489×10−4 atomic mass units. On the basis of Einstein's principle of mass–energy equivalence, this mass corresponds to a rest energy of 0.511 MeV.
Check attachment for further solution to the exercise.
Answer:
D = 5.3 g/mL
Explanation:
Density = Mass over Volume
D = m/V
Step 1: Define
D = unknown
m = 16 g
v = 3.0 mL
Step 2: Substitute and Evaluate
D = 16 g / 3.0 mL
D = 5.333333333 g/mL
Step 3: Simplify
We have 2 sig figs.
5.333333333 g/mL ≈ 5.3 g/mL