Answer: 12 students
Step-by-step explanation:
Let X and Y stand for the number of students in each respective class.
We know:
X/Y = 2/5, and
Y = X+24
We want to find the number of students, x, that when transferred from Y to X, will make the classes equal in size. We can express this as:
(Y-x)/(X+x) = 1
---
We can rearrange X/Y = 2/5 to:
X = 2Y/5
The use this value of X in the second equation:
Y = X+24
Y =2Y/5+24
5Y = 2Y + 120
3Y = 120
Y = 40
Since Y = X+24
40 = X + 24
X = 16
--
Now we want x, the number of students transferring from Class Y to Class X, to be a value such that X = Y:
(Y-x)=(X+x)
(40-x)=(16+x)
24 = 2x
x = 12
12 students must transfer to the more difficult, very early morning, class.
20 golf balls can fit in the can.
<u>Step-by-step explanation:</u>
Given:
Height (h) = 10 Inches
Volume of 15.625 Pi inches cube.
To Find:
How many balls can be filled in that can.
Solution:
Diameter of the golf ball [as per standard value] = 1.68 in
Radius of the golf ball = 
Volume of the golf ball = 
=
=
Volume of the can = 
Now we have to divide the volume of the can by the volume of the golf ball, we will get =
balls
Thus we can conclude that approximately 20 balls can be filled in that can.
Remove parentheses by multiplying factors.
use exponent rules to remove parentheses in terms with exponents.
combine like terms by adding coefficients.
combine the constants.
sgdhrjdjfjfj
Step-by-step explanation:
gkgzzggzgzzggzgzgzgz
The answer will be 23 bcd. Hope it’s helps