1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inysia [295]
2 years ago
12

Triangle GHI, with vertices G(-8,-8), H(-6,-7), and I(-9,-2),

Mathematics
1 answer:
Anna35 [415]2 years ago
3 0

Answer:

area = 6.5 square units

Step-by-step explanation:

Use the <em>area of a triangle in coordinate geometry</em> formula:

\triangle GHI =\frac{1}{2} |x_1(y_2- y_3) + x_2(y_3 -y_1) + x_3(y_1 -y_2)|

where (x_1,y_1)=(-8,-8) \ \ \ \ (x_2,y_2)=(-6,-7) \ \ \ \ (x_3,y_3)=(-9,-2)

      \triangle GHI =\frac{1}{2} |x_1(y_2- y_3) + x_2(y_3 -y_1) + x_3(y_1 -y_2)|

\implies \triangle GHI =\frac{1}{2} |-8(-7+2)  -6(-2 +8)  -9(-8 +7)|

\implies \triangle GHI =\frac{1}{2} |40  -36 +9|

\implies \triangle GHI =6.5

You might be interested in
Evaluate : X + 2 ( x -20) (4)<br> for x = 10
Oxana [17]

Answer:

x + 2 ( x - 20 )( 4 ) = -70

Step-by-step explanation:

hope this helps. . .<3

6 0
2 years ago
Triangle JKL has vertices J(2,5), K(1,1), and L(5,2). Triangle QNP has vertices Q(-4,4), N(-3,0), and P(-7,1). Is (triangle)JKL
Tems11 [23]

Answer:

Yes they are

Step-by-step explanation:

In the triangle JKL, the sides can be calculated as following:

  • J(2;5); K(1;1)

             => JK = \sqrt{(1-2)^{2} + (1-5)^{2}  } = \sqrt{(-1)^{2}+(-4)^{2}  } = \sqrt{1+16}=\sqrt{17}

  • J(2;5); L(5;2)

             => JL = \sqrt{(5-2)^{2} + (2-5)^{2}  } = \sqrt{3^{2}+(-3)^{2}  } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}

  • K(1;1); L(5;2)

             =>  KL = \sqrt{(5-1)^{2} + (2-1)^{2}  } = \sqrt{4^{2}+1^{2}  } = \sqrt{1+16}=\sqrt{17}

In the triangle QNP, the sides can be calculate as following:

  • Q(-4;4); N(-3;0)

             => QN = \sqrt{[-3-(-4)]^{2} + (0-4)^{2}  } = \sqrt{1^{2}+(-4)^{2}  } = \sqrt{1+16}=\sqrt{17}

  • Q (-4;4); P(-7;1)

   => QP = \sqrt{[-7-(-4)]^{2} + (1-4)^{2}  } = \sqrt{(-3)^{2}+(-3)^{2}  } = \sqrt{9+9}=\sqrt{18} = 3\sqrt{2}

  • N(-3;0); P(-7;1)

             =>  NP = \sqrt{[-7-(-3)]^{2} + (1-0)^{2}  } = \sqrt{(-4)^{2}+1^{2}  } = \sqrt{16+1}=\sqrt{17}

It can be seen that QPN and JKL have: JK = QN; JL = QP; KL = NP

=> They are congruent triangles

7 0
3 years ago
Read 2 more answers
Given the functionf ( x ) = x^2 + 7 x + 10/ x^2 + 9 x + 20
vladimir1956 [14]

<em>x = -4 is a vertical asymptote for the function.</em>

<h2>Explanation:</h2>

The graph of y=f(x) is a vertical has an asymptote at x=a if at least one of the following statements is true:

1) \ \underset{x\rightarrow a^{-}}{lim}f(x)=\infty\\ \\ 2) \ \underset{x\rightarrow a^{-}}{lim}f(x)=-\infty \\ \\ 3) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty \\ \\ 4) \ \underset{x\rightarrow a^{+}}{lim}f(x)=\infty

The function is:

f(x)=\frac{x^2+7x+10}{x^2+9x+20}

First of all, let't factor out:

f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20} \\ \\ f(x)=\frac{x(x+5)+2(x+5)}{x(x+5)+4(x+5)} \\ \\ f(x)=\frac{(x+5)(x+2)}{(x+5)(x+4)} \\ \\ f(x)=\frac{(x+2)}{(x+4)}, \ x\neq  5

From here:

\bullet \ When \ x \ approaches \ -4 \ on \ the \ right: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(-4^{+}+2)}{(-4^{+}+4)} \\ \\ \\ The \ numerator \ is \ negative \ and \ the \ denominator \\ is \ a \ small \ positive \ number. \ So: \\ \\ \underset{x\rightarrow -4^{+}}{lim}\frac{(x+2)}{(x+4)}=-\infty

\bullet \ When \ x \ approaches \ -4 \ on \ the \ left: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=? \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(-4^{-}+2)}{(-4^{-}+4)} \\ \\ \\ The \ numerator \ is \ a \ negative \ and \ the \ denominator \\ is \ a \ small \ negative \ number \ too. \ So: \\ \\ \underset{x\rightarrow -4^{-}}{lim}\frac{(x+2)}{(x+4)}=+\infty

Accordingly:

x=-4 \ is \ a \ vertical \ asymptote \ for \\ \\ f(x)=\frac{x^2+5x+2x+10}{x^2+5x+4x+20}

<h2>Learn more:</h2>

Vertical and horizontal asymptotes: brainly.com/question/10254973

#LearnWithBrainly

5 0
3 years ago
What is the product of the complex number z1 and it’s conjugate? PLEASE HELP GRAPH in picture
12345 [234]

Answer:

The product is 25

Step-by-step explanation:

we know that

The complex number z1 is equal to

z1=(-4-3i)

we know that

To find the complex conjugate of (-4 - 3i) we change the sign of the imaginary part

so

The conjugate is equal to (-4+3i)

therefore

(-4-3i)(-4+3i)=16-9(-1)=25

3 0
3 years ago
Read 2 more answers
A number r decreased by the quotient of a number r and two
worty [1.4K]
R - (12÷r)+2 
I think that thats the answer
4 0
3 years ago
Other questions:
  • I need some help with this rational equation. It's supposed to = -1, but for some strange reason I keep getting x^2 +2x = -1.
    14·1 answer
  • Are the triangles similar? If so, write the similarity statement and state which theorem or postulate is used to prove the two t
    15·2 answers
  • Just one says when you put together on equal groups you can only add is he correct
    11·1 answer
  • Solve the system using elimination. 3x + 3y = –9 3x – 3y = 21
    8·1 answer
  • yesterday kofi earned 50cedis mowing lawns. today kofi earned 60% of what he earned yesterday mowing lawns.How much did kofi ear
    6·1 answer
  • La mitad de un número más tres cuartos del número es 3 menos que cuatro tercios del número. Encuentre el número.
    15·1 answer
  • The owner of a luxury motor yacht that sails among the 4000 Greek islands charges $460 per person per day if exactly 20 people s
    6·1 answer
  • Work out m and c for the line: ? y = x + 6​
    13·1 answer
  • I need the answer in the next 6 hours
    14·2 answers
  • The booster club now raises $0.41 for each pom pom they sell.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!