Answer:
The ladder is 3.014 m tall.
Explanation:
To solve this problem, we must use the following formula:
v = x/t
where v represents the woman’s velocity, x represents the distance she climbed (the height of the ladder), and t represents the time it took her to move this distance
If we plug in the values we are given for the problem, we get:
v = x/t
2.20 = x/1.37
To solve this equation for x (the height of the ladder), we must multiply both sides by 1.37. If we do this, we get:
x = (2.20 * 1.37)
x = 3.014 m
Therefore, the ladder is 3.014 m tall.
Hope this helps!
1N=1kg•m/s^2 so the answer is 3N
At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
The relationship between current and voltage and resistance is described by ohlm's law. This equation i=v/r tells that the current i flowing through a circuit is directly proportional to the voltage v, and inversely proportional to resistance r. This desceibes the relationship of voltage, current and resistance.
Distance travelled in south direction= 1.5hr*0.75km/hr= 1.125km
Distance travlled in north direction= 0.90*2.5=2.25
Net displacement = 2.25-1.125= 1.125 to the north