The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
The problem describes the relationship of "bulb a" and "bulb b" to be in connected in series. When the switch is open then no current can flow, on the other hand, when it is closed, current will pass through.
When only "bulb a" is connected to the battery then more current is flowing to "bulb a" causing it to be bright.
Closing the switch would mean that "bulb b" is already included in the circuit and the battery will push small current to flow around the whole circuit. The more bulbs are connected, the harder for the current to flow because the resistance will be very high.
So the light of "bulb a" will be dimmer.
Answer:
The correct option is;
c. Temperature and color
Explanation:
Based on Wien's Law which can be presented mathematically as follows;

The wavelength of the peak of the blackbody curve tells the temperature and color.
An example is the Sun that has a temperature of 5800 K, hence the peak wavelength is given by
= 500 nano-meter from which the color can be deduced as 500 nano-meter is the wavelength of yellow light.