(-1,-2) and (-1,4)
so these have same x values, but different y values, so these are on differnt sidef of circle
distanc between them is 6
6/2=3
radius=3
so move 3 units up from (-1,-2)
(-1,1)
so
if center is (h,k) and radius is r then
(x-h)^2+(y-k)^2=r^2
(-1,1) is center and r=3
(x-(-1))^2+(y-1)^2=3^2
(x+1)^2+(y-1)^2=9
B+c+(c-b)+(b-c). That is your expression. b 11 c 16
First, let's convert the variables to real numbers: 11+16+(16-11)+(11-16)
Now, let's solve that equation. 11+16+5+(-5)
5+(-5) cancels out, so all we have left is: 27
That is your perimeter.
Answer:
Around the 3 + 6:-
(3 + 6) x 9 + 3
Step-by-step explanation:
(3 + 6) x 9 + 3
= 9 x 9 + 3
= 84.
ABC
MIT
MEL
are right triangles
to solve this you can get help from
ThePythagorean Proposition
or use an useful app all in one calculator
Answer:
Step-by-step explanation:
(a + b)² =a² + 2ab + b²
(a -b)² = a² - 2ab + b²
1) y = (x -1)²
y= x² - 2*x*1 + 1
y = x² - 2x + 1
Ans: C
2)y = (x +4)² + 5
y = x² +2*x*4 + 4² + 5
= x² + 8x + 16 + 5
y = x² + 8x + 21
C
3) y = -(x + 9)²- 10
y = - [x² + 18x + 81] - 10
= -x² - 18x - 81 - 10
y =-x² - 18x - 91
B
4) y = 3(x + 2)² - 18
y =3 [x² + 4x + 4] - 18
y = 3x² + 12x + 12 - 18
y =3x² + 12x - 6
A
5) y = -2(x + 1)² - 16
= -2[x² + 2x + 1] -16
= -2x² - 4x - 2 - 16
y = -2x² - 4x - 18
A
6) y = 5(x + 5)²
=5[x²+ 10x + 25]
y = 5x² +50x + 125
A
7)y = (1/2)(x + 8)² - 8
y = (1/2) (x² + 16x + 64) - 8

A
8) y = (x + 3/2)² + 3/4

C
9) y = 2[x² + 16x + 64] - 5x
y = 2x² + 32x + 64 - 5x
y =2x² + 27x + 6