Answer:
2.55 m/s
Explanation:
A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30° as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp. Use energy methods to determine the speed of the crate at the bottom of the ramp.
Solution:
The work done by friction is given as:

The work done by gravity is:

This is a case of elastic collision.
The equation is m1v1i+m2v2i=m1v1f+m2v2f
Substituting we get:
(8)(5)+(5.28)(-1.65)=(8)(0.5)+(5.28)(v2f)
V2f=5.168m/s
Acceleration is a vector quantity that expresses the rate of change in velocity. Being a vector quantity, then the value has magnitude and direction. If the car exerts a constant net force as it travels, the greater the angle of elevation is, the greater is the decrease in its acceleration. Since the vertical component of is affected by the acceleration due to the gravity, that is why vehicles exert more force to climb a steeper hills.
Answer:
Explanation:
To find the angular velocity of the tank at which the bottom of the tank is exposed
From the information given:
At rest, the initial volume of the tank is:

where;
height h which is the height for the free surface in a rotating tank is expressed as:

at the bottom surface of the tank;
r = 0, h = 0
∴
0 = 0 + C
C = 0
Thus; the free surface height in a rotating tank is:

Now; the volume of the water when the tank is rotating is:
dV = 2π × r × h × dr
Taking the integral on both sides;

replacing the value of h in equation (2); we have:


![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{r^4}{4} \Big]^R_0](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7Br%5E4%7D%7B4%7D%20%5CBig%5D%5ER_0)
![V_f = \dfrac{ \pi \omega ^2}{g} \Big [ \dfrac{R^4}{4} \Big] --- (3)](https://tex.z-dn.net/?f=V_f%20%3D%20%5Cdfrac%7B%20%5Cpi%20%5Comega%20%5E2%7D%7Bg%7D%20%5CBig%20%5B%20%20%5Cdfrac%7BR%5E4%7D%7B4%7D%20%5CBig%5D%20---%20%283%29)
Since the volume of the water when it is at rest and when the angular speed rotates at an angular speed is equal.
Then 
Replacing equation (1) and (3)






Finally, the angular velocity of the tank at which the bottom of the tank is exposed = 10.48 rad/s