1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
2 years ago
5

Cashews cost $6.75/lb. and Jeanna can spend at most $30 for them. How many pounds can she buy?

Mathematics
2 answers:
Vika [28.1K]2 years ago
6 0

Answer:

4.44 lb

Step-by-step explanation:

$6.75 ---> 1 lb

$1 ---> (1/6.75) lb

$30 ---> [$30* (1/6.75)] lb

$30 ---> 4.44

So she can buy most 4.44 lb of pounds

Step-by-step explanation:

pls branliest to me he/she have 210 me onley 4

Harman [31]2 years ago
4 0

Answer:

4.44 lb

Step-by-step explanation:

$6.75 ---> 1 lb

$1 ---> (1/6.75) lb

$30 ---> [$30* (1/6.75)] lb

$30 ---> 4.44

So she can buy most 4.44 lb of pounds

You might be interested in
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value
vodomira [7]

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

5 0
3 years ago
Kevin and Michelle traveled together by car and shared the driving. Kevin drove for 3.25 hours, then Michelle drove for 1.5 hour
jek_recluse [69]

Using the relation of velocity, distance and time, it is found that 35 represents Michelle's velocity.

-----------------------------

Velocity is <u>distance divided by time</u>, then:

v = \frac{d}{t}

Kevin drove for 3.25 hours, thus t_1 = 3.25. The distance drove by Kevin is:

d_1 = v_1t_1

d_1 = 3.25v_1

Michelle drove for 1.5 hours, thus t_2 = 1.5. The distance drove by Michelle is:

d_2 = v_2t_2

d_2 = 1.5v_2

The total distance is:

d = d_1 + d_2

d = 3.25v_1 + 1.5v_2

Comparing to the expression:

3.25v_1 + 1.5v_2 = 3.25(42) + 1.5(35)

We get that 42 is Kevin's speed and 35 is Michelle's speed.

A similar problem is given at brainly.com/question/24316569

8 0
2 years ago
Please give the measure of NPQ and explain how you got it
anygoal [31]

Answer:

C

Step-by-step explanation:

NQP is a triangle. It has 3 angles given.

We know

<em>sum of 3 angles in a triangle is 180 degrees</em>

<em />

We are Given:

∠N = 2x

∠Q = 2x + 2

∠P = 134

THus, we can write and solve for x first:

∠N + ∠Q + ∠P = 180

2x + 2x + 2 + 134 = 180

4x + 136 = 180

4x = 180 - 136

4x = 44

x = 44/4

x = 11

Now, measure of ∠NQP is 2x + 2, so substituting the value of "x", we have:

2x + 2 = 2(11) + 2 = 22 + 2 = 24 degrees

So,

∠NQP = 24°

Correct answer is C

4 0
3 years ago
4. Is the binomial that represents the length of the fish tank a factor of the polynomial that
Arlecino [84]
But I hope someone answers u 2920
5 0
3 years ago
Nth triangular number = 2 (n + 1)
mina [271]

Answer:

a) 2(n+1)

=2(12+1)

=2*13

=26

b) 2(n+1)

=2(50+1)

=2*51

=102

7 0
3 years ago
Other questions:
  • I need help with this. Im so confused
    6·1 answer
  • the football team has a total of 25 jerseys. There are 10 meduim-sized jerseys. What percent of yhe jerseys are medium-sized jer
    7·1 answer
  • Can someone be kind to help me on questions 29-30
    6·1 answer
  • Find the product and write ot in the lowest terms. 6 over 7 × 9 over 4
    15·1 answer
  • Can you help me with this question please
    7·2 answers
  • Suppose you are walking home after school. The distance from your home to school is 5 km. on foot, you can get home in 1/2 mins.
    15·1 answer
  • Help please asap................
    15·1 answer
  • The top of the tallest mast of a sail boat is 48 feet above sea level. The boat's anchor is resting on the sea bed 24 feet below
    6·1 answer
  • Can someone help me with these two problems please!!!!!
    15·1 answer
  • What is 32% of 275?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!