Answer:
C. A-T rich; initiator
Explanation:
Replication origins have A-T rich DNA sequences that attract initiator proteins.
Replication origin is the DNA sequence where replication is initiated in a genome. The replication origin sequences is rich in adenine (A) and thymine (T) bases because it is easier to break the bonds between the bases compared to the bonds between guanine and cytosine. adenine (A) and thymine (T) bases have two bonds joining them as against three bonds between guanine and cytosine
The initiator proteins recognizes DNA sequences in the replication origin and helps to initiate DNA replication.
Answer:
When the cell has 0% sucrose I expect the cell to stay the same.
Explanation:
First of all, this question should not be confused for the statement "When the "cell" has 0% sucrose, did you expect the cell to have gained water, lost water, or stay the same. In this case, the correct answer would have been; gained water.
But, in this question, we are asked what happens to the cells at 0% sucrose concentration. At 0% (no solute) concentration, there is no net movement of water or solute into or out of the cell, because the cell is isotonic to the external environment (distilled water). Osmosis, a special kind of diffusion, is the movement of water, from areas of lower solute concentration to area of higher solute concentration, or from areas of higher water concentration to areas of lower water concentration through a semi-permeable membrane. If the water moves into the cells (hypertonic cells), then the cell gains water and increases in size, but if the cell loses water (hypotonic cell), then it reduces in size
Answer:
The system that moves blood throughout the body.
Answer:
Radiolabeled carbon atom in CO2
Explanation:
Photosynthesis is the process by which green plants fix the atmospheric CO2 into glucose. The process includes carbon fixation during which RuBisCo enzyme catalyzes the reaction of CO2 and a five-carbon compound called RuBP to form 3-phosphoglycerate (3-PGA). The 3-PGA enters the reduction phase of the Calvin cycle wherein it is reduced into glyceraldehyde 3-phosphate. Two molecules of glyceraldehyde 3-phosphate make one molecule of glucose.
To test the hypothesis that glyceraldehyde 3-phosphate from photosynthesis is used by plants to synthesize lipids, radiolabeled CO2 must be used. The radiolabeled carbon atom in the CO2 would be fixed in the form of glyceraldehyde 3-phosphate. If the plant uses glyceraldehyde 3-phosphate as a precursor for lipid synthesis, the synthesized lipid molecules would carry the radiolabeled carbon atom.
Crease, could you mark brainliest? :)