Answer:
2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.
Explanation:
- For balancing a chemical equation, we should apply the law of conversation of mass. It states that the no. of atoms in the reactants side is equal to that of the products side.
So, the balanced equation:
<em>2C₃H₇BO₃ + 8O₂ → 6CO₂ + 7H₂O + B₂O₃.</em>
It is clear that 2.0 moles of C₃H₇BO₃ is completely burned in 8 m oles of oxygen and produce 6 moles of CO₂, 7 moles of H₂O and 1 mole of B₂O₃.
Luster is the correct answer.
Answer: Option (b) is the correct answer.
Explanation:
When there are more number of hydroxide ions in a solution then there will be high concentration of
or hydroxide ions. As a result, more will be the strength of base in that particular solution.
A base is strong when it readily dissociate into its ions in the solution. When a base is strong, then it does not matter at what concentration it is dissolved in the solution because despite of its low concentration it will remain a strong base.
Thus, we can conclude that out of the given options, the statement even at low concentrations, a strong base is strong best relates the strength and concentration of a base.
We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.