Explanation:
local winds are considered breezes while global winds produce mostly storms
Answer:
answer is a because drugs do so to the person.
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3
Answer:
See Explanation
Explanation:
The equation of the reaction;
KHSO4(aq) + KOH(aq) -------> K2SO4(aq) + H2O(l)
Number of moles of KHSO4 = 49.6 g/136.169 g/mol = 0.36 moles
Since the reaction is in a mole ratio of 1:1, 0.36 moles of K2SO4 is produced.
Number of moles of KOH = 25.3 g/56.1056 g/mol = 0.45 moles
Since the reaction is 1:1, 0.45 moles of K2SO4 is produced
Hence K2SO4 is the limiting reactant.
Mass of K2SO4 formed = 0.36 moles of K2SO4 * 174.26 g/mol = 62.7 g
So;
1 mole of KHSO4 reacts with 1 mole of KOH
0.36 moles of KHSO4 reacts with 0.36 * 1/1 = 0.36 moles of KOH
Amount of excess KOH = 0.45 moles - 0.36 moles = 0.09 moles
Mass of excess KOH = 0.09 moles * 56.1056 g/mol = 5 g of excess KOH
Answer:
Explanation:
The oxidation number is an integer that represents the number of electrons that an atom receives or makes available to others when it forms a given compound.
The oxidation number is positive if the atom loses electrons, or shares them with an atom that has a tendency to accept them. And it will be negative when the atom gains electrons, or shares them with an atom that has a tendency to give them up.
Chemical compounds are electrically neutral. That is, the charge that all the atoms of a compound contribute must be globally null. That is, when having positive or negative charges in a compound, their sum must be zero.
There are some rules for determining oxidation numbers in compounds. Among them it is possible to mention:
- Hydrogen (H) has an oxidation number +1 with nonmetals and - 1 with metals.
- Oxygen (O) presents the oxidation number -2
- Fluorine F has a unique oxidation state -1
Then:
- NOF: N+(-2)+(-1)=0 → N=3 → oxidation number of nitrogen (N) is +3, oxidation number of oxygen (O) is -2 and oxidation number of fluorine (F) is -1.
- ClF₅: Cl + 5*(-1)=0 → Cl= 5 → oxidation number of chlorine (Cl) is +5 and oxidation number of fluorine (F) is -1.
- H₂SO₃: 2*(+1)+S+3*(-2)=0 → S=4 → oxidation number of hydrogen (H) is +1, oxidation number of oxygen (O) is -2 and oxidation number of sulfur (S) is +4.