Heat = mass (m)*specific heat (C)* change in temperature (Δt)
In the current scenario,
mass = 200 g = 0.2 kg
C = 0.11 kCal/kg.°C
Δt = 10 °C
Therefore,
Heat = 0.2*0.11*10 = 0.22 kCal = 0.22*4186 J = 920.92 J
By "solution" it means a course of action that, once carried out, brings about some desired state of affairs. The use of engineer in this context is as a verb meaning "to arrange or bring about through skillful, artful contrivance."
The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg
100cm to go in 600 secs = 10mins
2 positive, 1 negative .... net 1 positive per step
We know, W = F * s
W = mg * s
Here, w = 2 J
m = 180 g = 0.180 Kg
g = 9.8 m/s
Substitute their values into the expression:
2 = 0.180*9.8 * s
1.764s = 2
s = 2 / 1.764
s = 1.13 meter
In short, Your Final Answer is 1.13 m
Hope this helps!