Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
Gravitational acceleration (Ga) is inversely proportional to k / Distance^2
so Ga * Distance^2 = K
On the surface of Earth acceleration due to gravity is about 9.8m/s^2 with an average distance to the earths core of about 6371 km (Wolfram alpha).
So k = 9.8 * 6371^2
I'm presuming that your distance of 116 is km
As
Ga = k / distance^2
Ga = ((9.8 * 6371^2) / (6371 + 116)^2 ) = 397778481.8 / 42081169
= 9.45 m/s^2 to 2sf
I believe the coma is formed from the dust and gas from a comet.
Hope this helps!! :)
Focal length is the distance between the center of a convex lens or a concave mirror and the focal point of the lens or mirror — the point where parallel rays of light meet, or converge. From the optics the focal length of the mirror can be defined as the radius of the mirror divided between two, or in other words, half the radius of the mirror.



Therefore the focal length of the mirror is 17cm
22. reduction
25. Le Chatelier's principle