Answer:
Final momentum after a head on collision is -2kgm/
Explanation:
One ball moves to the right and the other moves opposite and momentum is a vector quantity so that considering the direction
Initial momenta are P₁=2x3=6kgm/s P₂=4x(-2)=-8kgm/s
Final momentum is the vector sum of P(final)= 6-8= -2 kgm/s
B, Light, mechanical. The solar panel takes in light energy (from the sun), and in exchange spits out mechanical energy (turns the wheels/powers the battery).
Pacemaker........................................................
Answer:
2.726472 s more or 1.5874 times more time is taken than 10-lb roast.
Explanation:
Given:
- The cooking time t is related the mass of food m by:
t = m^(2/3)
- Mass of roast 1 m_1 = 20 lb
- Mass of roast 2 m_2 = 10 lb
Find:
how much longer does a 20-lb roast take than a 10-lb roast?
Solution:
- Compute the times for individual roasts using the given relation:
t_1 = (20)^(2/3) = 7.36806 s
t_2 = (10)^(2/3) = 4.641588 s
- Now take a ration of t_1 to t_2, to see how many times more time is taken by massive roast:
t_1 / t_2 = (20 / 10)^(2/3)
- Compute: t_1 / t_2 = 2^(2/3) = 1.5874 s
- Hence, a 20-lb roast takes 1.5874 times more seconds than 10- lb roast.
t_2 - t_1 = 2.726472 s more
Answer:
1. G.P.E = 24 J
2. center of mass
Explanation:
Given the following data;
Mass = 2kg
Height, h = 1.2m
Acceleration due to gravity = 9.8 N/kg or m/s².
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
- G.P.E represents potential energy measured in Joules.
- m represents the mass of an object.
- g represents acceleration due to gravity measured in meters per seconds square.
- h represents the height measured in meters.
Substituting into the formula, we have;

G.P.E = 23.52 to 2 S.F = 24 Joules.
Translation kinetic energy is defined as the energy of a system due to the motion of the system’s center of mass. The center of mass is typically where the mass of the object or particle is concentrated.