I believe Intangibility is the answer! :P I hope this helps!
Answer:

Yes it is better to pull the rope rather than push it
Explanation:
Let the force is applied at an angle of 60 degree
so we will have net vertical force on the crate is given as

here we know




now friction force on the crate is given as




Yes it is better to pull the rope rather than push it
If it's Kepler's law of equal areas you're talking about,
then the first of the four statements is true.
Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
Answer:
The burden distance is 7 ft
Solution:
As per the question:
Specific gravity of package emulsion, 
Specific gravity of diabase rock, 
Diameter of the packaged sticks, d = 3 in
Now,
To calculate the first trail shot burden distance, B:
![B = [\frac{2SG_{E}}{SG_{R}} + 1.5]\times d](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2SG_%7BE%7D%7D%7BSG_%7BR%7D%7D%20%2B%201.5%5D%5Ctimes%20d)
![B = [\frac{2\times 1.25}{2.76} + 1.5]\times 3 = 7.22](https://tex.z-dn.net/?f=B%20%3D%20%5B%5Cfrac%7B2%5Ctimes%201.25%7D%7B2.76%7D%20%2B%201.5%5D%5Ctimes%203%20%3D%207.22)
B = 7 ft