Answer:
atomic number
Explanation:
mass is determined by the protons and neutrons
Answer: The fusion of hydrogen to form helium
Explanation:
The answer is B. Molecules move more quickly as temperature increases.
When Allmond molecular motion stops, that is considered absolute zero. That does not mean that it cannot get colder, disapproving A.
C is just wrong.
D says when molecular motion stops the temperature STARTS to decrease, it was decreasing before it got there.
Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Answer:
Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6
Bromocresol green, color change from pH = 4.0 to 5.6
Explanation:
The equation for the reaction is :

concentration of
= 10%
10 g of
in 100 ml solution
molar mass = 45.08 g/mol
number of moles = 10 / 45.08
= 0.222 mol
Molarity of 
= 2.22 M
number of moles of
in 20 mL can be determined as:

Concentration of 
= 2.22 M
Similarly, The pKa Value of
is given as 10.75
pKb value will be: 14 - pKa
= 14 - 10.75
= 3.25
the pH value at equivalence point is,
![pH= \frac{1}{2}pKa - \frac{1}{2}pKb-\frac{1}{2}log[C]](https://tex.z-dn.net/?f=pH%3D%20%5Cfrac%7B1%7D%7B2%7DpKa%20-%20%5Cfrac%7B1%7D%7B2%7DpKb-%5Cfrac%7B1%7D%7B2%7Dlog%5BC%5D)
![pH = \frac{14}{2}-\frac{3.25}{2}-\frac{1}{2}log [2.22]](https://tex.z-dn.net/?f=pH%20%3D%20%5Cfrac%7B14%7D%7B2%7D-%5Cfrac%7B3.25%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7Dlog%20%5B2.22%5D)

Therefore, The indicator that is best fit for the given titration is Bromocresol Green Color change from pH between 4.0 to 5.6