<h3>
Answer: 14x - 8</h3>
=======================================================
Explanation:
I'll use the quadratic formula to find the roots or x intercepts. This slight detour allows us to factor without having to use guess-and-check methods.
The equation is of the form ax^2+bx+c = 0
This leads to...

Now use those roots to form these steps

Refer to the zero product property for more info.
Therefore, the original expression factors fully to (4x-5)(3x+1)
Use the FOIL rule to expand it out and you should get 12x^2-11x-5 again.
----------------------------------------------
We did that factoring so we could find the side lengths of the rectangle.
I'm using the fact that area = length*width
- L = length = 4x-5
- W = width = 3x+1
The order of length and width doesn't matter.
From here, we can then compute the perimeter of the rectangle
P = 2(L+W)
P = 2(4x-5+3x+1)
P = 2(7x-4)
P = 14x - 8