Ok so first, write down the equation. We know that x=3 and y=4. You just basically plug in the terms into the variables. So it would be 3(3)+1/4(4)^2. Simplify that equation and you should get your answer :)
Answer:
30 40 percent
Step-by-step explanation:
it is less that 50
Answer:
P ( 5 < X < 10 ) = 1
Step-by-step explanation:
Given:-
- Sample size n = 49
- The sample mean u = 8.0 mins
- The sample standard deviation s = 1.3 mins
Find:-
Find the probability that the average time waiting in line for these customers is between 5 and 10 minutes.
Solution:-
- We will assume that the random variable follows a normal distribution with, then its given that the sample also exhibits normality. The population distribution can be expressed as:
X ~ N ( u , s /√n )
Where
s /√n = 1.3 / √49 = 0.2143
- The required probability is P ( 5 < X < 10 ) minutes. The standardized values are:
P ( 5 < X < 10 ) = P ( (5 - 8) / 0.2143 < Z < (10-8) / 0.2143 )
= P ( -14.93 < Z < 8.4 )
- Using standard Z-table we have:
P ( 5 < X < 10 ) = P ( -14.93 < Z < 8.4 ) = 1
Answer:
is your average rate of change,
Step-by-step explanation:
average rate of change is
, by slope formula
simplify this to get , which is the definition of the derivative as h goes to 0
since you defined x=a, we can substitute a for x and vice versa to find our derivative.
simplifying
(your average rate of change)