Answer:
always same
Explanation:
velocity and speed are same upto some extend but velocity is vector while speed is scalar quantity
Answer:
The correct answer is option A: they are isotopes.
Explanation:
From atom X we know that the number of protons is 7 and the number of neutrons is 7 and from atom Z we know that the number of protons is 7 and the number of neutrons is 8.
Since the number of protons of atom X and atom Z is the same, we have that atom X and atom Z is the same element. The difference in the number of neutrons tells us that atom X and atom Z are isotopes. Remember that an isotope is one element that has atoms with different numbers of neutrons.
The mass number is given by:
Where <em>n</em> is the number of neutrons and <em>p </em>is the number of protons.
For atom X and atom Z we have:

Hence, they have a different mass number.
We know that the element with 7 protons is nitrogen. The first isotope is
and the second isotope is
. Both isotopes are stables (they are not radioactive).
Therefore, the correct answer is option A: they are isotopes.
I hope it helps you!
Answer:
The rate at which the container is losing water is 0.0006418 g/s.
Explanation:
- Under the assumption that the can is a closed system, the conservation law applied to the system would be:
, where
is all energy entering the system,
is the total energy leaving the system and,
is the change of energy of the system. - As the purpose is to kept the beverage can at constant temperature, the change of energy (
) would be 0. - The energy that goes into the system, is the heat transfer by radiation from the environment to the top and side surfaces of the can. This kind of transfer is described by:
where
is the emissivity of the surface,
known as the Stefan–Boltzmann constant,
is the total area of the exposed surface,
is the temperature of the surface in Kelvin,
is the environment temperature in Kelvin. - For the can the surface area would be ta sum of the top and the sides. The area of the top would be
, the area of the sides would be
. Then the total area would be 
- Then the radiation heat transferred to the can would be
. - The can would lost heat evaporating water, in this case would be
, where
is the rate of mass of water evaporated and,
is the heat of vaporization of the water (
). - Then in the conservation balance:
, it would be
. - Recall that
, then solving for
:
Answer:
4.4345× 10^-7V
Explanation:
The computation of the half voltage for a 1.2T magnetic field applied is shown below
The volume of one mole of copper is
v = m ÷p
= 63.5 ÷ 8.92
= 7.12cm
Now the density of free electrons in copper is
n = Na ÷ V
= 6.02 × 10^23 ÷ 7.12
= 8.456× 10^28/m^3
Now the half voltage is
= IB ÷ nqt
= (5 × 1.20) ÷ (8.456× 10^28 × 1.6 × 10^-19 × 0.1× 10^-2)
= 4.4345× 10^-7V
Answer:
0.023 Ohms
Explanation:
Given data
Length= 2.8m
radius= 1.03mm
current I= 1.35 A
voltage V= 0.032V
We know that from Ohm's law
V= IR
Now R= V/I
Substitute
R= 0.032/1.35
R= 0.023 Ohms
Hence the resistance is 0.023 Ohms