Answer:
hey answer in the comment section
Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds
Apply the combined gas law
PV/T = const.
P = pressure, V = volume, T = temperature, PV/T must stay constant.
Initial PVT values:
P = 1atm, V = 8.0L, T = 20.0°C = 293.15K
Final PVT values:
P = ?, V = 1.0L, T = 10.0°C = 283.15K
Set the PV/T expression for the initial and final PVT values equal to each other and solve for the final P:
1(8.0)/293.15 = P(1.0)/283.15
P = 7.7atm
True: Friction depends on the types of surfaces involved and how hard the surfaces push together.
Answer:
Explanation:
The center of mass lies on a line that joins position 4 of one start with position 4 of the other star. The shortest distance between these two points will produce the largest velocity. You are using F = m v^2/R
Small R = large force.
Large Force = increased speed.
The masses don't have any effect on the outcome: they remain constant.