You find yourself in a place that is unimaginably <u>hot and dense</u>. A r<u>apidly changing</u><u> gravitational field</u><u> </u>randomly warps space and time. Gripped by these huge fluctuations, you notice that there is but a single, unified force governing the universe, you are in the early universe before the Planck time.
<h3>What is Planck time?</h3>
The Planck time is approximately<u> 10^-44 seconds</u>. The smallest time interval, or "zeptosecond," that has so far been measured is <u>10^-21 seconds</u>. A photon traveling at the speed of light would need one Planck time <u>to traverse a distance of one </u><u>Planck length</u>.
<h3>What is Planck length?</h3>
Planck units are a set of measuring units used only in particle physics and physical cosmology. They are defined in terms of <u>four universal </u><u>physical constants</u> in such a way that when expressed in terms of these units, these physical constants have the numerical value 1. These units are a system of natural units because its definition is <u>based on characteristics of nature</u>, more especially the characteristics of free space, rather than a selection of prototype object, as was the case with Max Planck's original 1899 proposal. They are pertinent to the study of unifying theories like quantum gravity.
To learn more about Plank time:
brainly.com/question/23791066
#SPJ4
Answer:
Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.
Explanation:
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet
Answer:
τ = 0.00203 seconds
Explanation:
The time constant τ in a R-L circuit is given by
τ = L/R
First we have to find out the equivalent resistance of the circuit.
Since there is a parallel combination of 19 Ω and 6.0 Ω resistor
Req = 19*6/19+6
Req = 4.56 Ω
Now we can find out the time constant
τ = L/R
τ = 0.0093/4.56
τ = 0.00203 seconds
Therefore, the time constant of this circuit is 0.00203 seconds.