System is a group of similar organs working together...... Organ is a group of similar tissues forming a layer in an organism which perform a specific function.....tissue is a group of similar cell which carry out a particular function
Adhesive.
Adhesive is the force of attraction between molecules of different kind. Liquid flows upward the wick because the adhesive force between the wick and the liquid is higher than cohesive forces in the liquid.
When the adhesive force between the wick and the liquid is high we have capillarity taking place. This cause the liquid to move up the wick.
Answer:
Pulleys accomplish 2 separate operations throughout the computer controlled additional benefit technologies listed elsewhere here.
Explanation:
- If indeed the pulley would be connected to that same attachment point, these are named a corrected pendulum or perhaps a change in direction. Its job should be to reverse the trajectory of that same rope pull.
- Unless the pulley would be connected to that same load, this same pulley seems to be a detachable as well as a mechanical additional benefit.
Answer:
Option B
Explanation:
<h3>According to Newton's third law, for every reaction there will be equal and opposite reaction</h3>
Here in this case the force of the club hitting the golf ball will be in one direction and the force acting on club due to golf ball will be in opposite direction and magnitude of this force will be same as the magnitude of the force of the club hitting the golf ball
In this case the action will be the force of the club hitting the golf ball and reaction will be the force acting on club due to golf ball
∴ The club pushes against to golf ball with a force equal and opposite to the force of the golf ball on the club
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m