First list all the terms out.
e^ix = 1 + ix/1! + (ix)^2/2! + (ix)^3/3! ...
Then, we can expand them.
e^ix = 1 + ix/1! + i^2x^2/2! + i^3x^3/3!...
Then, we can use the rules of raising i to a power.
e^ix = 1 + ix - x^2/2! - ix^3/3!...
Then, we can sort all the real and imaginary terms.
e^ix = (1 - x^2/2!...) + i(x - x^3/3!...)
We can simplify this.
e^ix = cos x + i sin x
This is Euler's Formula.
What happens if we put in pi?
x = pi
e^i*pi = cos(pi) + i sin(pi)
cos(pi) = -1
i sin(pi) = 0
e^i*pi = -1 OR e^i*pi + 1 = 0
That is Euler's identity.
S+9
More than suggests addition.
Answer:
Part A:
The graph passes through (0,2) (1,3) (2,4).
If the graph that passes through these points represents a linear function, then the slope must be the same for any two given points. Using (0,2) and (1,3). Write in slope-intercept form, y=mx+b. y=x+2
Using (0,2) and (2,4). Write in slope-intercept form, y=mx+b. y=x+2. They are the same and in graph form, it gives us a straight line.
Since the slope is constant (the same) everywhere, the function is linear.
Part B:
A linear function is of the form y=mx+b where m is the slope and b is the y-intercept.
An example is y=2x-3
A linear function can also be of the form ax+by=c where a, b and c are constants. An example is 2x + 4y= 3
A non-linear function contains at least one of the following,
*Product of x and y
*Trigonometric function
*Exponential functions
*Logarithmic functions
*A degree which is not equal to 1 or 0.
An example is...xy= 1 or y= sqrt. x
An example of a linear function is 1/3x = y - 3
An example of a non-linear function is y= 2/3x
Answer:
1.) SSS
Step-by-step explanation:
It would be -15.4 rounding to the nearest hundredth