Answer:

Explanation:
Hello there!
Unfortunately, the question is not given in the question; however, it is possible for us to compute the equilibrium constant as the problem is providing the concentrations at equilibrium. Thus, we first set up the equilibrium expression as products/reactants:
![K=\frac{[NO_2]^2}{[NO]^2[O_2]}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BNO%5D%5E2%5BO_2%5D%7D)
Then, we plug in the concentrations at equilibrium to obtain the equilibrium constant as follows:

In addition, we can infer this is a reaction that predominantly tends to the product (NO2) as K>>>>1.
Best regards!
Meiosis makes sperm cells and eggs in our parents.
Genes are passed on from them to us.
As Genes carry characteristic, we inherit some characters of our either parent.
That Genetic code resides in DNA [ in it's nitrogenous bases ]
DNA resides under the nucleus of our cells.
When, it translated, it forms into "Protein"
[ We used all 6 words, but in sequence, with proper functioning/place ]
Hope this helps!
Answer: D
Explanation:
A reducing agent is a species that reduces other compounds, and is thereby oxidized. The whole compound becomes the reducing agent. In other words, of a compound is oxidized, then they are the reducing agent. On the other hand, if the compound is reduced, it is an ozidizing agent.
Since we have established that a reducing agent is the compound being oxidized, we know that A is not our answer. An oxidized compound is losing electrons. Choice A states exactly this.
For B, this is true as we have established this already.
C is also correct. Since a reducing agent loses electrons, it becomes more positive. This makes the oxidation number increase.
D would be our correct answer. It is actually a good oxidizing agent is a metal in a high oxidation state, such as Mn⁷⁺.
The law of conservation of mass say that, in a chemical reaction, the mass of the reagents will always be equal to the mass of the products. This is shown in the reaction given below.
- Mass of the reagent: 100 g.
- Mass of the products: 56 + 44 = 100 g.
Answer:
A metallic bond.
Explanation:
Potassium is a metal (alkali metal), hence its bonds are metallic bonds.
Hope this helped!