1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
2 years ago
15

5. The points (4, 1) and (x,-6) lie on the same line. If the slope of the line is 1, what is the value of

Mathematics
1 answer:
Rzqust [24]2 years ago
8 0

\frac{1 + 6}{x - 4}  = 1

x - 4 = 7

x = 11

You might be interested in
3 &amp; 4, And tell explanation<br><br> (P.S: Sorry for my sloppy handwriting)
Kazeer [188]
3) Altitude / Time = y2 - y1 / x2 - x1 = 30 - 60 / 6 - 3
 m = -30 / 3
 m = -10

In short, constant rate of change is y = -10x

b) Constant proportionality exists between two quantities, as the amount of changing in Altitude over fixed period of time is same (constant) for every instance. 

4) Sales / Day = y2-y1 / x2-x1 = 2,000 - 1,000 / 6 - 3
m = 1000 / 3
m = 333.3

a) In short, Constant relationship is y = 333.3x

b) Constant proportionality exists between two quantities, as the amount of changing in Sales over fixed days is same (constant) for every instance. 

Hope this helps!
5 0
3 years ago
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
What’s the vertical asymptote of the equation f(x)=log3(x-5)
ICE Princess25 [194]

Answer:The line x=5

Step-by-step explanation:

Asymptote of a function means the straight line closest to some part of the function which tends to ∞  or -∞. We know that ln x or log x has asymptote x=0. Here , the function is f(x) = log 3(x-5), so, the vertical asymptote will be the line x =5.

7 0
3 years ago
If the Federal Reserve sets the reserve rate to 2%, what is the resulting money
Yuliya22 [10]

Answer:A

Step-by-step explanation:

6 0
3 years ago
Darren and barb each tried to evaluate 6(2) + 4 ÷ 2 who elaluated the expression correctly?
arlik [135]

Answer:

14

Step-by-step explanation:

6(2)

12

4÷2

2

12+2

pemdas

7 0
2 years ago
Read 2 more answers
Other questions:
  • Greg bought 4 notebooks for $6.40.<br><br> What is the price, in dollars, of 1 notebook?
    14·2 answers
  • The quotient of 25 and the sum of 3 and a number that equals 28 is what?
    9·1 answer
  • 5m &gt; 20 how do I solve this??
    7·1 answer
  • Brett writes a number that is the same distance from o as 6 on a number line but in the opposite direction. What number did bret
    6·1 answer
  • I need to know how to solve the equation 2/3x+1= -1/3x-1
    15·1 answer
  • A cone of radius 3cm and slant height 6cm is cut into four identical pieces. Calculate the total surface area of the four pieces
    7·1 answer
  • What does the quotiant 35/x represent?
    13·1 answer
  • Suppose that on a true/false exam you have no idea at all about the answers to three questions. You choose answers randomly and
    11·1 answer
  • Pls help me anyone! pls im so stuck here
    11·1 answer
  • Some one please help me on my exam
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!