Hi,
To solve this problem, Let us take the LCM of 10 and 16 which will come 80.
Now suppose the cost price of 10 tables =₹n CP of 80 tables will be ₹ 8n
According to the question, CP of 10 tables is equal to the SP of 16 tables, then
the SP of 16 tables will also be ₹ n.
So, SP of 80 tables will be ₹ 5n
So, Loss = CP-SP
→ 8n - 5n = ₹ 3n
Loss%= (3n×100)/8n
Loss%= 37.5%.
Hence the correct answer will be a <u>loss of 37.5%.</u>
The maximum volume of the box is 40√(10/27) cu in.
Here we see that volume is to be maximized
The surface area of the box is 40 sq in
Since the top lid is open, the surface area will be
lb + 2lh + 2bh = 40
Now, the length is equal to the breadth.
Let them be x in
Hence,
x² + 2xh + 2xh = 40
or, 4xh = 40 - x²
or, h = 10/x - x/4
Let f(x) = volume of the box
= lbh
Hence,
f(x) = x²(10/x - x/4)
= 10x - x³/4
differentiating with respect to x and equating it to 0 gives us
f'(x) = 10 - 3x²/4 = 0
or, 3x²/4 = 10
or, x² = 40/3
Hence x will be equal to 2√(10/3)
Now to check whether this value of x will give us the max volume, we will find
f"(2√(10/3))
f"(x) = -3x/2
hence,
f"(2√(10/3)) = -3√(10/3)
Since the above value is negative, volume is maximum for x = 2√(10/3)
Hence volume
= 10 X 2√(10/3) - [2√(10/3)]³/4
= 2√(10/3) [10 - 10/3]
= 2√(10/3) X 20/3
= 40√(10/27) cu in
To learn more about Maximization visit
brainly.com/question/14682292
#SPJ4
Complete Question
(Image Attached)
Answer:
Step-by-step explanation:
6x+3x= -2
9x= -2
x= -2/9
15304.8 Hope this helps you
By viewing equivalent ratios and rates as deriving from, and extending,
pairs of rows (or columns) in the multiplication table and by analyzing
simple drawings that indicate the relative size of quantities.