Answer:
See the answer below
Explanation:
First, let us look at the complete equation of respiration:

The respective number of each atom in the reactants and the products can be filled in the table thus:
Types of atom Number of atom in reactants Number of atom in products
Carbon 6 6
Hydrogen 12 12
Oxygen 18 18
<em>The total number of each atom in the reactants is equal to the total number in the products. Hence, the calculation confirms the law of conservation of matter that says that matters can neither be created nor destroyed, but can be converted from one form to another in a course of a reaction. </em>
<em />
<span>Answers;
1.Breeding of individuals that have genes for two different characteristics; Dihybrid cross
2.A grid system used to predict possible combinations of genes due to random fertilization; Punnet square
3 A condition in which both alleles are dominant; Codominance
4.when more than two alternatives exist for a gene; multiple alleles
5.A condition in which neither pair of alleles is dominant or recessive, so the traits blend in the phenotype ;Incomplete dominance;
Explanation;
</span>Dihybrid cross;
<span>It involves the breeding of individuals that have genes for two different characteristics. It involves the cross of individuals that are both heterozygous for two different traits. For example two different traits in a pea plant; color and shape; for color we have; Y-allele for yellow seeds and y- allele for green seeds, For Shape trait; R-allele for round seeds and r-allele for wrinkled seeds. So the dihydbrid cross would be (RrYy </span>× RrYy).
<span>
Punnet square;
</span><span>This a grid system or a square diagram that is used to predict possible combinations of genes due to random fertilization. It is used by biologists determine the probability of an offspring having a particular genotype.
</span><span>The letters on the outside of a Punnett Square stand for the parent allele.
</span>
Codominance;
<span>This is a condition in heterozygotes in which both members of an allelic pair are dominant and both contribute to the phenotype.
A good example of codominance is the ABO blood group; A person with blood group AB, it means that both the A allele and B allele are equally expressed.
Multiple alleles
</span><span>This is when more than two alternatives for a gene exist.
Examples of multiple allelism in human;The genes of the ABO blood group system. The human ABO system is controled by three alleles, namely; A-allele, B-allele and O-allele.
Incomplete dominance;
</span><span>This is condition in heterozygotes in which both members of an allelic pair are neither dominant nor recessive to other alleles, so the two traits blend in the phenotype of the individual.
An example; is a snapdragon flower that is pink as a result of cross-pollination between a red flower and a white flower. Which means neither the white allele or the red allele are dominant. </span>
Answer:
Plant and animals cells they are both eukaryotic cells, both have membrane bound organelles.They have nucleus, cytoplasm, cell membrane, mitochondria, endoplasmic reticulm, golgi apparatus, lysosomes, peroxisomes and ribosomes. Plant have cell walls and chloroplast animal do not
Explanation:
Answer:
Phosphorylation within the nuclear export signal interferes with the function of the signal.
Explanation:
In biochemistry, phosphorylation is the addition of a phosphate group (PO4) to a protein or other molecule. Phosphorylation is a major player in protein regulation mechanisms, preventing protein-catalyzed reaction product from accumulating in the body causing problems.
However, in some cases phosphorylation may cause nuclear accumulation of a protein in the nucleus of the cell. An example of this is the protein shown in the question above. In this case, phosphorylation in the nuclear export signal interferes with the signal function, resulting in protein accumulation in the nucleus.