Consider this balanced chemical equation:
2 H2 + O2 → 2 H2O
We interpret this as “two molecules of hydrogen react with one molecule of oxygen to make two molecules of water.” The chemical equation is balanced as long as the coefficients are in the ratio 2:1:2. For instance, this chemical equation is also balanced:
100 H2 + 50 O2 → 100 H2O
This equation is not conventional—because convention says that we use the lowest ratio of coefficients—but it is balanced. So is this chemical equation:
5,000 H2 + 2,500 O2 → 5,000 H2O
Again, this is not conventional, but it is still balanced. Suppose we use a much larger number:
12.044 × 1023 H2 + 6.022 × 1023 O2 → 12.044 × 1023 H2O
These coefficients are also in the ratio of 2:1:2. But these numbers are related to the number of things in a mole: the first and last numbers are two times Avogadro’s number, while the second number is Avogadro’s number. That means that the first and last numbers represent 2 mol, while the middle number is just 1 mol. Well, why not just use the number of moles in balancing the chemical equation?
2 H2 + O2 → 2 H2O
Answer:
A. SI units allow scientists to communicate around the world using the same
system of measurement.
Explanation:
Answer:
95% Copper and 5% Zinc
Explanation:
Easy stuff read in the chemistry book...
Answer:
4.4×10² cm³
Explanation:
From the question given above, the following data were obtained:
Diameter (d) = 68.3 mm
Height (h) = 0.120 m
Volume (V) =?
Next, we shall convert the diameter (i.e 68.3 mm) to cm.
This can be obtained as follow:
10 mm = 1 cm
Therefore
68.3 mm = 68.3 mm / 10 mm × 1 cm
68.3 mm = 6.83 cm
Therefore, the diameter 68.3 mm is equivalent 6.83 cm.
Next, we shall convert the height (i.e 0.120 m) to cm. This can be obtained as follow:
1 m = 100 cm
Therefore,
0.120 m = 0.120 m/ 1 m × 100 cm
0.120 m = 12 cm
Therefore, the height 0.120 m is equivalent 12 cm.
Next, we shall determine the radius of the cylinder. This can be obtained as follow:
Radius (r) is simply half of a diameter i.e
Radius (r) = Diameter (d) /2
r = d/2
Diameter (d) = 6.83 cm
Radius (r) =?
r = d/2
r = 6.83/2
r = 3.415 cm
Finally, we shall determine the volume of the cylinder as follow:
Radius (r) = 3.415 cm
Height (h) = 12 cm
Volume (V) =?
Pi (π) = 3.14
V = πr²h
V = 3.14 × (3.415) ² × 12
V = 440 cm³
V = 4.4×10² cm³
Therefore, the volume of the cylinder is 4.4×10² cm³
Answer:
CH3CH2CH2Cl
CH3CH2CH2CH2CH2SH
Br2
Explanation:
Dispersion forces increases with increase in relative molecular mass. The specie having the greater relative molecular mass definitely has greater dispersion forces. A rough estimation of the relative molecular masses of the species stated in the answer will reveal this fact.