Molarity is defined as number of moles of solute in 1 L of solution.
Here, 0.1025 g of Cu is reacted with 35 mL of HNO_{3} to produced Cu^{2+} ions.
The balanced reaction will be as follows:
Cu+3HNO_{3}\rightarrow Cu(NO_{3})_{2}+NO_{2}+H_{2}O
From the above reaction, 1 mole of Cu produces 1 mole of Cu^{2+}, convert the mass of Cu into number of moles as follows:
n=\frac{m}{M}
molar mass of Cu is 63.55 g/mol thus,
n=\frac{0.1025 g}{63.55 g/mol}=0.0016 mol
Now, total molarity of solution, after addition of water is 200 mL or 0.2 L can be calculated as follows:
M=\frac{n}{V}=\frac{0.0016 mol}{0.2 L}=0.008 mol/L=0.008 M
Thus, molarity of Cu^{2+} is 0.008 M.
First question I believe is B
The second one is also B
I really hope it helped
Cumulonimbus clouds, of course!. These clouds are known to carry rain, hail, and thunder. Bigger versions are known as supercells, deadly storms that can spew out tons of rain, hail, wind, and even tornadoes!
Answer:
A covalent bond
Explanation:
the atoms bond by sharing electrons. Covalent bonds usually occur between nonmetals. For example, in water (H2O) each hydrogen (H) and oxygen (O) share a pair of electrons to make a molecule of two hydrogen atoms single bonded to a single oxygen atom.
Answer
Depends on type of mixture. But I think separating the different sized particles through filtration would be a sufficient answer for middle school level unless they have taught you about other mixtures.
Explanation:
Hey,
There are thousands of way to separate mixtures. Each way is specific to the type of mixture. If the mixture is homogeneous processes like distillation can be employed. For heterogeneous mixture filtration can be used to separate particles of different sizes.