<span>Well if you're looking for grams, all you need to do is cancel out units.
(ml)(g/ml)=g because the ml cancels out.
Thus, multiply: (85.32ml)(1.03g/ml)=...I'll let you solve this. :)
Good luck! Hope that helped. When in doubt, look at the units.</span>
1. H₂SO₄ + 2NH₄OH ⟶ (NH₄)₂SO₄ + 2H₂O
2. 2NaOH + H₂CO₃ ⟶ Na₂CO₃ + 2H₂O
3. HNO₃ + KOH ⟶ KNO₃ + H₂O
<em>Explanation</em>:
Acid + base ⟶ salt + water
Take the H from the acid and the OH from the base to get water.
Then, join what’s left to get the salt. Write the symbol for the metal first.
For example, in equation 3, take the H from HNO₃ and the OH from KOH.
Combining the remaining parts (NO₃ and K) to get the salt, KNO₃.
Amphiprotic compounds are able to both donate and accept a proton.
Amphiprotic compounds contain a hydrogen atom and lone pair of valence electron.
For example, HSO₃⁻ (hydrogen sulfate ion) is an amphiprotic compound.
Balanced chemical equation for reaction when HSO₃⁻ donate protons to water:
HSO₃⁻(aq) + H₂O(l) ⇄ SO₄²⁻(aq) + H₃O⁺(aq).
Ka = [SO₄²⁻] · [H₃O⁺] / [HSO₃⁻]
Balanced chemical equation for reaction when HSO₃⁻ accepts protons from water:
HSO₃⁻(aq) + H₂O(l) ⇄ H₂SO₄(aq) + OH⁻(aq).
Kb = [H₂SO₄] · [OH⁻] / [HSO₃⁻]
Water (H₂O), amino acids, hydrogen carbonate ions (HCO₃⁻) are examples of amphiprotic species.
Another example, water is an amphiprotic substance:
H₂O + HCl → H₃O⁺ + Cl⁻
H₂O + NH₃ → NH₄⁺ + OH⁻
More about amphiprotic compounds: brainly.com/question/3421406
#SPJ4