Heat of combustion.<span> The calorific value is the total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions. The chemical reaction is typically a hydrocarbon or other organic molecule reacting with oxygen to form carbon dioxide and water and release heat.</span>
According to Newton's Second Law of Motion, the net force experienced by the system is equal to the mass of the system in question times the acceleration in motion. In this case, the net force is the difference of gravitational force and the force experience by the motion of the airplane. This difference is already given to be 210 N.
Net force = ma
210 N = (73 kg)(a)
a = +2.92 m/s²
Thus, the acceleration of the airplane's motion is 2.92 m/s² to the positive direction which is upwards.
Answer:
6.96 s
Explanation:
<u>Given:</u>
- u = initial speed of the automobile = 0 m/s
- a = constant acceleration of the automobile =

- v = constant speed of the truck = 8.7 m/s
<u>Assume:</u>
- t = time instant at which the automobile overtakes the truck.
At the moment the automobile and the truck both meat each other the distance travel by both vehicles must be the same.

Since t = 0 s is the initial condition. So, they both meet again at t = 6.96 s such that the automobile overtakes the truck.
Hahahahha ok it’s B or C or it B
Answer:
For the First answer I cant answer it But I can help you :
The solid has constituent particles tightly packed and the lattice vibrations are carried out by them in their fixed position however oscillations take place about their mean position. These vibrations are increased as soon as there is increase in the temperature which eventually leads to the more chaotic motion of the constituents. At a fixed critical point of temperature, the bonds are broken and the constituent particles are spaced apart changing their phase into liquid. When more temperature is increased by gaining heat energy then the liquid changes into gas where the motion of constituent particles moving freely is dominant.
Explanation: