consider the motion in Y-direction
v₀ = initial velocity = 29 Sin62 = 25.6 m/s
a = acceleration = - 9.8 m/s²
t = time of travel
Y = vertical displacement = - 0.89 m
using the equation
Y = v₀ t + (0.5) a t²
- 0.89 = (25.6) t + (0.5) (- 9.8) t²
t = 5.3 sec
consider the motion along the horizontal direction :
v₀ = initial velocity = 29 Cos62 = 13.6 m/s
a = acceleration = 0 m/s²
t = time of travel = 5.3 sec
X = horizontal displacement =?
using the equation
X = v₀ t + (0.5) a t²
X = (13.6) (5.3) + (0.5) (0) t²
X = 72.1 m
d = distance traveled by the center fielder to catch the ball = 107 - x = 107 - 72.1 = 34.9 m
t = time taken = 5.3 sec
v = speed of center fielder
using the equation
v = d/t
v = 34.9/5.3
v = 6.6 m/s
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.
Cubical expansion, also known as, volumetric expansion has the following formula:
</span>Δ V = β V₁ ΔT
V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.
β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
The rate of change of vertical pressure is directly proportional to density and also directly proportional to temperature.
Generally, the relationship between temperature, density and rate of vertical pressure is given as;


where;
- <em>ρ is density</em>
- <em>T is temperature</em>
- <em>dP is rate of change of vertical pressure</em>
Thus, from the formula above, we can conclude the following relationship between temperature, density and the rate of vertical pressure change in spatial pattern of heights.
The rate of change of vertical pressure is directly proportional to density and also directly proportional to temperature.
Learn more here:brainly.com/question/25395377
Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec