Answer:I'm gonna say mechanical or kinetic depending on how you look at it.
Explanation:
Given what we know, we can confirm that the tensional force of a system can in theory be changed without diminishing its force through the use of an ideal pulley.
<h3>What is an ideal pulley?</h3>
- A pulley is a small wheel through which a string or chain is run.
- These are used in order to change the direction of a force.
- An ideal pulley would be one in which there is no friction and the pulley itself would have no mass.
- Therefore, the force would be able to change directions without giving part of its force to the pulley system.
Therefore, we can confirm that the only known way to change the direction of a force without diminishing its value would be through the use of a frictionless and massless pulley system otherwise known as an ideal pulley.
To learn more about Friction visit:
brainly.com/question/13357196?referrer=searchResults
Answer:
Explanation:
A and B are in series , Total resistance = Ra + Rb
This resistance is in parallel with single resistor C
Equivalent resistance Re = Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )]
Now this combination is in series in single resistance D .
Total resistance = Rd + Re
= Rd + { Rc x ( Ra + Rb ) / [Rc + ( Ra + Rb )] }
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Answer:

Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.

Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:

Substituting:

Calculating:

