Answer:
??
Step-by-step explanation:
pls type the question properly have a good day:-)
Answer:
A
Step-by-step explanation:
As the sample size n increases, the sample mean (μy) becomes a more accurate estimate of the parametric mean, so the standard error of the mean becomes smaller. Therefore, the variance of y decreases and the distribution of y becomes highly concentrated around μy.
Answer:
I don't no sorry for that
Answer:
y= -2x -8
Step-by-step explanation:
I will be writing the equation of the perpendicular bisector in the slope-intercept form which is y=mx +c, where m is the gradient and c is the y-intercept.
A perpendicular bisector is a line that cuts through the other line perpendicularly (at 90°) and into 2 equal parts (and thus passes through the midpoint of the line).
Let's find the gradient of the given line.

Gradient of given line




The product of the gradients of 2 perpendicular lines is -1.
(½)(gradient of perpendicular bisector)= -1
Gradient of perpendicular bisector
= -1 ÷(½)
= -1(2)
= -2
Substitute m= -2 into the equation:
y= -2x +c
To find the value of c, we need to substitute a pair of coordinates that the line passes through into the equation. Since the perpendicular bisector passes through the midpoint of the given line, let's find the coordinates of the midpoint.

Midpoint of given line



Substituting (-3, -2) into the equation:
-2= -2(-3) +c
-2= 6 +c
c= -2 -6 <em>(</em><em>-</em><em>6</em><em> </em><em>on both</em><em> </em><em>sides</em><em>)</em>
c= -8
Thus, the equation of the perpendicular bisector is y= -2x -8.
Answer:
3.427 *10^3
Step-by-step explanation:
Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the 10
. If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.