For number 3 the answer is solid: pizza
liquid: smoothie
gas: air diffuser
When a ray passes from air into glass the direction in which the light ray is travelling changes. The light ray appears to bend as it as it passes through the surface of the glass. When a light ray passes from air into water a similar thing occurs: the light ray is bent as it strikes the surface of the water.
<span>The boat applying a force on the person pushing her forward.
</span>
Hope this helps!
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)
Answer:
P V = n R T ideal gas equation
P2 V2 / P1 V1 = T2 / T1
V2 / V1 = T2 / T1 * P1 / P2 = T2 P1 / (T1 P2)
V2 / V1 = (1.17 T1) / T1 * (P1 / .22 P1) assuming absolute temp as 1.17 P1
V2 / V1 = 1.17 / .22 = 5.32
V = 4/3 pi R^3 = 4/3 pi (D/2)^3 = 4/3 pi D^3 / 8 = pi D^3 / 6
V2 / V1 = D2^3 / D1^3
D2 = (V2 / V1 * D1^3)^1/3
D2 = 5.32^1/3 * D = 1.75 D (D1 = D)