Gravitational potential energy=mass*gravitational acceleration*heightKinetic energy = 0.5*mass*velocity²Thus:K.E0.5*1*x²=12.5x²=12.5/(0.5*1)x=√12.5/(0.5*1)x=5
GPEmass*gravitational acceleration*height1*9.81*h=98h=98/(9.81*1)h= 9.98 J approximately, rounded 10meters
Answer:
Explanation:
a )
Each blade is in the form of rod with axis near one end of the rod
Moment of inertia of one blade
= 1/3 x m l²
where m is mass of the blade
l is length of each blade.
Total moment of moment of 3 blades
= 3 x
x m l²
ml²
2 )
Given
m = 5500 kg
l = 45 m
Putting these values we get
moment of inertia of one blade
= 1/3 x 5500 x 45 x 45
= 37.125 x 10⁵ kg.m²
Moment of inertia of 3 blades
= 3 x 37.125 x 10⁵ kg.m²
= 111 .375 x 10⁵ kg.m²
c )
Angular momentum
= I x ω
I is moment of inertia of turbine
ω is angular velocity
ω = 2π f
f is frequency of rotation of blade
d )
I = 111 .375 x 10⁵ kg.m² ( Calculated )
f = 11 rpm ( revolution per minute )
= 11 / 60 revolution per second
ω = 2π f
= 2π x 11 / 60 rad / s
Angular momentum
= I x ω
111 .375 x 10⁵ kg.m² x 2π x 11 / 60 rad / s
= 128.23 x 10⁵ kgm² s⁻¹ .
Answer: 3.92 N.
Explanation:
Your box weighs 400g, or 0.4kg. In order to lift it, you need to overcome the force of gravity. F = ma, and acceleration due to gravity is -9.8 m/s^2. So gravity acts on the box with a force of 0.4 kg * -9.8 m/s^2 = -3.92 N. A force of +3.92 N is required to overcome this.
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
Elements that give up electrons easily are called <u>metals.</u>
hope this helps!