Protons and neutrons are packed together in a very small region called nucleus. Protons are positively charged and we know that like charges repel. Then how is it that protons are not repelling each other and flying away from nucleus?
You may think that gravitational force is holding all the protons together but it is not so. Gravitational force is many times weaker than repulsive force.
It is actually strong force which holds proton together. At this short distance, strong force comes into play and is several times stronger than the repulsive force.
Explanation:
If we assume negligible air resistance and heat loss, we can assume that all of the Gravitational potential energy of the ball will turn into Kinetic energy as it falls toward the ground.
Therefore our Kinetic energy = mgh = (10kg)(9.81N/kg)(100m) = 9,810J.
This situation has a basis such that the solid sphere and the hoop has the same mass. The analysis could be made<span> backwards . The ball will decelerate fastest, so not roll as high. The sphere will accelerate faster, but this also means it decelerates faster on the way up. Hence the answer is the hoop if the masses are equal </span>
Answer:
Time taken = 8.25 second
Explanation:
Given:
Force = 4000 N
Force = ma
4,000 = (1100)(a)
Acceleration = 3.6363 m/s²
v = u + at
0 = 30 + (3.6363)t
Time taken = 8.25 second