<h3>X-Rays contradict to?</h3>
<h3>C. gamma </h3>
a type of penetrating electromagnetic radiation produced by the radioactive disintegration of atomic nuclei
Correct choices are marked in bold:
travel in straight lines and can bounce off surfaces --> TRUE, normally electromagnetic waves travel in straight lines, however they can be reflected by objects, bouncing off their surfaces
travel through space at the speed of light --> TRUE, all electromagnetic waves in space (vacuum) travel at the speed of light,
)
travel only through matter --> FALSE; electromagnetic waves can also travel through vacuum
travel only through space --> FALSE, electromagnetic waves can also travel through matter
can bend around objects --> TRUE, this is what happens for instance when diffraction occurs: electromagnetic waves are bended around obstacles or small slits
move by particles bumping into each other --> FALSE, electromagnetic waves are oscillations of electric and magnetic fields, so no particles are involved
move by the interaction between an electric field and a magnetic field --> TRUE, electromagnetic waves consist of an electric field and a magnetic field oscillating in a direction perpendicular to the direction of motion of the wave
Answer:
If you push horizontally with a small force, static friction establishes an equal and opposite force that keeps the book at rest. As you push harder, the static friction force increases to match the force. Eventually maximum static friction force is exceeded and the book moves.
Explanation:
Answer:
The maximum electric field strength = 0.01 V/m
Explanation:
Given
ΔV(max) = 4.00 mV = 0.004 V
d = 0.400 m
f = 1.00 Hz
Maximum electric field = (maximum potential)/(length)
Maximum electric field = E(max)
Maximum potential = 4.00 mV = 0.004 V
Length = 0.400 m
E(max) = (0.004/0.4) = 0.01 V/m
Hope this Helps!!!
If your speed changes from 10 km/h to 6 km/h then
you have an acceleration.
Whether it's a positive or negative one completely depends
on which direction you decided to call the positive direction,
when you started considering your speed and its changes.
If you decided to call the direction in which you're traveling
the positive direction, then a decrease in your speed is a
negative acceleration.
But you could just as easily have said that you're traveling
in the negative direction. If you did that, then a decrease in
your speed would be a positive acceleration.
It's completely up to you, and how you define things.