Answer:
An outside force
Explanation:
Newton's law an object in motion stays in motion an object at rest stays at rest unless acted on by an outside force.
<span>So we want to know what happens to the momentum of the ball that rolls down hill and hits a box. So we need to use the law of conservation of momentum which states that the momentum must be conserved. It cant be transformed into inertia or mass. It can only be transferred to other object via some interactions like collisions. So it has to be a. transferred to the box and that is the correct answer. </span>
Part (a): Magnetic dipole moment
Magnetic dipole moment = IA, I = Current, A = Area of the loop
Then,
Magnetic dipole moment = 2.6*π*0.15^2 = 0.184 Am^2
Part (b): Torque acting on the loop
T = IAB SinФ, where B = Magnetic field, Ф = Angle
Then,
T = Magnetic dipole moment*B*SinФ = 0.184*12*Sin 41 = 1.447 Nm
Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ
Answer:
Solenoid's inductance is 1.11 × 10^-8H
The average emf around the solenoid is 1.3 × 10^-5V
Explanation: Please see the attachments below