0.29 m/s (wave velocity = wavelength (lamda)/period (T) in metres)
35 / 1.2 = 29.16
29.16 ÷ 100 = 0.29
Wave velocity in string:
The properties of the medium affect the wave's velocity in a string. For instance, if a thin guitar string is vibrated while a thick rope is not, the guitar string's waves will move more quickly. As a result, the linear densities of the two strings affect the string's velocity. Linear density is defined as the mass per unit length.
Instead of the sinusoidal wave, a single symmetrical pulse is taken into consideration in order to comprehend how the linear mass density and tension will affect the wave's speed on the string.
Learn more about density here:
brainly.com/question/15164682
#SPJ4
Strange as it may seem, that's true. (choice 'a'.)
"Acceleration" doesn't mean "speeding up". It means ANY change in
the speed or direction of motion. So a car with the brakes applied
and slowing down, and a point on the rim of a bicycle wheel that's
turning at a constant rate, are both accelerating.
This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3
Answer:
D physiological condition
Explanation:
Sensation and perceptions are complimentary to each other but have different roles within the brain. Sensations are the process of experiencing the world with the five senses and sending that information to the brain. Perceptions are the way we interpret sensations.
Answer:
D) 8
Explanation:
Due to the octet rule the most stable atoms will have 8 valence electrons.