Answer:
tetrahedral geometry
<h3>CHCH2O- CH2CH3</h3>
Explanation:
There are several centers of interest. Each carbon with all single bonds is the center of a tetrahedral geometry.
Answer:
9.4 liter
Explanation:
1) Data:
V₁ = 10.0 L
T₁ = 25°C = 25 + 273.15 K = 298.15 K
P₁ = 98.7 Kpa
T₂ = 20°C = 20 + 273.15 K = 293.15 K
P₂ = 102.7 KPa
V₂ = ?
2) Formula:
Used combined law of gases:
PV / T = constant
P₁V₁ / T₁ = P₂V₂ / T₂
3) Solution:
Solve the equation for V₂:
V₂ = P₁V₁ T₂ / (P₂ T₁)
Substitute and compuite:
V₂ = P₁V₁ T₂ / (P₂ T₁)
V₂ = 98.7 KPa × 10.0 L × 293.15 K / (102.7 KPa × 298.15 K)
V₂ = 9.4 liter ← answer
You can learn more about gas law problems reading this other answer on
Explanation:
For one mole of hydrogen, H, the atomic mass is 1 g per mole. Hydrogen contains 1 proton and zero neuton. A neutral atom of hydrigen also contains 1 electron.
The answer should be hydrogen bonding. Water only has oxygen and hydrogen in it, which are both nonmetals, so you know the answer cannot be metallic or ionic. It also cannot be nonpolar because the electronegativity of the oxygens will make the molecule polar. You can also know it is hydrogen bonding because it can only take place when a hydrogen is attached to an oxygen, fluorine, or nitrogen. These bonds are very strong attractions, so the molecules are extremely hard to pull apart, creating a high boiling point. Hope that helps!
The answer is A, Mars and Jupiter.