Answer:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
To add matrices, we add the corresponding components.
The given matrices is
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D)
We add the corresponding components to get;
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}3+6&9+0\\5+-8&-2+4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B6%269%2B0%5C%5C5%2B-8%26-2%2B4%5Cend%7Barray%7D%5Cright%5D)
We simplify to get:
![\left[\begin{array}{cc}3&9\\5&-2\end{array}\right] +\left[\begin{array}{cc}6&0\\-8&4\end{array}\right]=\left[\begin{array}{cc}9&9\\-3&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%269%5C%5C5%26-2%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D6%260%5C%5C-8%264%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D9%269%5C%5C-3%262%5Cend%7Barray%7D%5Cright%5D)
Answer:
C
Step-by-step explanation:
In this technique, if we have to factorise an expression like ax2+bx+c, we need to think of 2 numbers such that:
N1⋅N2=a⋅c=1⋅−12=−12
AND
N1+N2=b=−1
After trying out a few numbers we get N1=3 and N2=−4
3⋅−4=−12, and 3+(−4)=−1
x2−x−12=x2−4x+3x−12
x(x−4)+3(x−4)=0
(x+3)(x−4)=0
Now we equate the factors to zero.
x+3=0,x=−3
x−4=0,x=4
No. No. It is not linear because the slope has to be able to be plugged in to any x, y coordinates and be placed on the line.
Answer:
You will be hot as shet
Step-by-step explanation:
e
1.202
3/5 and 1/2 can be 6/10 and 5/10. then 0.1/2 is 0.05. for the other part, just plug 0.72 x 1.6 into a calculator.