Answer:570.54 N
Explanation:
Given
mass of man=76 kg

As man is standing over inclined building therefore
its weight has two components i.e. sin and cos component
Force perpendicular to inclined wall

F=570.54 N
Answer:

Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of
for 182 seconds. Then it brakes with a constant acceleration of
until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is

Our data is

Let's compute the first distance X1


Now, we find the speed at the end of the first period of time


That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0



Computing the second distance


The total distance is



The answer is option D a gallon of gasoline.
Explanation:
A gallon of gasoline has the least chemical energy. The energy content of gallon of gasoline is about 132,000 Btu. The gasoline produced is equivalent in energy terms to 4 kilowatt hours.
Gasoline has chemical potential energy stored in chemical bonds. Gasoline is called as gas or petrol, mixture of volatile, flammable liquid hydrocarbons are used as fuel for internal- combustion engines. It is used as solvent for oils and fats.
Gasoline gallon equivalent is the alternative fuel taken to equal the energy content of one liquid gallon of gasoline.
Answer:
a.
W
Explanation:
= temperature of the surface of sun = 5800 K
= Radius of the Sun = 7 x 10⁸ m
= Surface area of the Sun
Surface area of the sun is given as

= Emissivity = 1
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻²K⁻⁴
Using Stefan's law, Power output of the sun is given as
