Distance traveled by him = circumference of that circular path = 2πr = 2π(3.5)
= 7π = 7×3.14 = 21.98 m
time = 8.9 s [ Given ]
Now, Average speed = distance / time
s = 21.98 / 8.9
s = 2.46 m/s
Hope this helps!
Answer:
a) 0.167 μC/m^2
b) 1.887 * 10^4 V/m
Explanation:
Hello!
First let's find the surface charge density:
a)
Since thesatellite is metallic, the accumalted charge will be uniformly distribuited on its surface. Therefore the charge density σ will be:
σ = Q/A
Where A is the area of the satellite, which is:
A=4πr^2 = πd^2 = π(1.9m)^2
Therefore:
σ = (1.9)/(π (1.9)^2) μC/m^2 = 0.167 μC/m^2
Now let's calculate the electric field
b)
Just outside the surface of the satellite the elctric field will be:
E = σ/ε0
Where ε0=8.85×10^−12 C/Vm
Therefore:
E = (0.167*10^-6 C/m^2) / (8.85*10^-12 C/Vm) = 0.01887 *10^6 V/m
E = 1.887 * 10^4 V/m
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Work package. Hope this helps!
Answer:
15 Joules
Explanation:
work = charge x potential difference
= 10 x 1.5
= 15