The angles diagonally opposite each other are congruent while those adjacent to each other add up to 180 degrees. You can get eight congruent angles with a transversal if the two lines are parallel, because each angle would be 90.
Let the one type of the bread be bread A
The second type of the bread be bread B
Let the flour be 'f' and the butter be 'b'
We need 150f + 50b for bread A and 75f + 75b for bread B
We can compare the amount of flour and bread needed for each bread and write them as ratio
FLOUR
Bread A : Bread B
150 : 75
2 : 1
We have a total of 2250gr of flour, and this amount is to be divided into the ratio of 2 parts : 1 part. There is a total of 3 parts.
2250 ÷ 3 = 750 gr for one part then multiply back into the ratio to get
Bread A : Bread B = (2×750) : (1×750) = 1500 : 750
BUTTER
Bread A : Bread B = 50 : 75 = 2 : 3
The amount of butter available, 1250 gr is to be divided into 2 parts : 3 parts.
There are 5 parts in total
1250 ÷ 5 = 250 gr for one part, then multiply this back into the ratio
Bread A: Bread B = (2×250) : (3×250) = 500 : 750
Hence, for bread A we need 1500 gr of flour and 500 gr of butter, and for bread B, we need 750 gr of flour and 750 gr of butter.
The question is "What's Stella's opportunity cost of working on her serve for an hour?" The rest of the info looks like it's meant to confuse you. They charge $10 an hour. She values an hour of her time at $20. I believe that means she would pay $20. Hope this helps!
He actually borrowed P=21349-3000=18349 (present value)
Assume the monthly interest is i.
then future value due to loan:
F1=P(1+i)^n=18349(1+i)^(5*12)=18349(1+i)^60
future value from monthly payment of A=352
F2=A((1+i)^n-1)/i=352((1+i)^60-1)/i
Since F1=F2 for the same loan, we have
18349(1+i)^60=352((1+i)^60-1)/i
Simplify notation by defining R=1+i, then
18349(R^60)-352(R^60-1)/(R-1)=0
Simplify further by multiplication by (R-1)
f(R)=18349*R^60*(R-1)-352(R^60-1)=0
Solve for R by trial and error, or by iteration to get R=1.004732
The APR is therefore
12*(1.004732-1)=0.056784, or 5.678% approx.