
<h3><u>Given </u><u>:</u><u>-</u></h3>
- We have given Rhombus QRST
- The measurement of two sides of rhombus that is ( 6x - 5 ) and ( 4x + 13).
<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>
- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u>
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
<u>Here</u><u>, </u><u> </u><u>We </u><u>have </u>
<u>We </u><u>know </u><u>that</u><u>, </u>
- All sides of rhombus are equal
- Opposite sides of rhombus are parallel to each other
<u>Therefore</u><u>, </u>
<u>From </u><u>the </u><u>figure</u><u>, </u><u>we </u><u>can </u><u>conclude </u><u>that </u><u>:</u><u>-</u>






Hence, The value of x is 9 .
<h3><u>The </u><u>measurement </u><u>of </u><u>the </u><u>sides </u><u>of </u><u>rhombus </u><u>QRST</u><u> </u><u>:</u><u>-</u><u> </u></h3>
Length of side QR




Length of side RS




<u>From </u><u>above </u><u>we </u><u>can </u><u>say </u><u>that</u><u>, </u>
- All sides of rhombus are equal.
<h3><u>Some </u><u>more </u><u>properties </u><u>of </u><u>rhombus </u></h3>
- Opposite angles of rhombus are equal
- Diagonals of rhombus bisect each other at 90°
- Diagonals of rhombus also bisect the side angles of rhombus
- Rhombus is a quadrilateral, so the sum of interior angles of rhombus are 360°
- Whereas, The sum of the adjacent angles of rhombus are 180°.
- All rhombus are parallelogram but all parallelograms are not rhombus .