1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Natalija [7]
1 year ago
14

What is f(5) if f(1) = 3. 2 and f(x 1) = Five-halves(f(x))?

Mathematics
2 answers:
stealth61 [152]1 year ago
8 0

Function assign value from one set to another. The value of f(5), if f(1) = 3.2 and f(x+1) = Five-halves(f(x)) is 125.

<h3>What is Function?</h3>

A function assigns the value of each element of one set to the other specific element of another set.

As it is given the value of the function f(1) is 3.2, while the value of f(x+1) is f(x+1) = \dfrac{5}{2}[f(x)], therefore, in order to find the value of f(5), we need to calculate the value of f(4).

f(2)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(2)=f(1+1) = \dfrac{5}{2}[f(1)]\\\\f(2) = 2.5 \times 3.2\\\\f(2) = 8

f(3)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(3)=f(2+1) = \dfrac{5}{2}[f(2)]\\\\f(3) = 2.5 \times 8\\\\f(3) = 20

f(4)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(4)=f(3+1) = \dfrac{5}{2}[f(3)]\\\\f(4) = 2.5 \times 20\\\\f(4) = 50

f(5)

f(x+1) = \dfrac{5}{2}[f(x)]\\\\f(5)=f(4+1) = \dfrac{5}{2}[f(4)]\\\\f(5) = 2.5 \times 50\\\\f(5) = 125

Hence, the value of f(5), if f(1) = 3. 2 and f(x+1) = Five-halves(f(x)) is 125.

Learn more about Function:

brainly.com/question/5245372

Zepler [3.9K]1 year ago
6 0

Answer:

Its 125

Step-by-step explanation:

got it right on ed

You might be interested in
Let and be differentiable vector fields and let a and b be arbitrary real constants. Verify the following identities.
elena-14-01-66 [18.8K]

The given identities are verified by using operations of the del operator such as divergence and curl of the given vectors.

<h3>What are the divergence and curl of a vector field?</h3>

The del operator is used for finding the divergence and the curl of a vector field.

The del operator is given by

\nabla=\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}

Consider a vector field F=x\^i+y\^j+z\^k

Then the divergence of the vector F is,

div F = \nabla.F = (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(x\^i+y\^j+z\^k)

and the curl of the vector F is,

curl F = \nabla\times F = \^i(\frac{\partial Fz}{\partial y}- \frac{\partial Fy}{\partial z})+\^j(\frac{\partial Fx}{\partial z}-\frac{\partial Fz}{\partial x})+\^k(\frac{\partial Fy}{\partial x}-\frac{\partial Fx}{\partial y})

<h3>Calculation:</h3>

The given vector fields are:

F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k

1) Verifying the identity: \nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

Consider L.H.S

⇒ \nabla.(aF1+bF2)

⇒ \nabla.(a(M\^i + N\^j + P\^k) + b(Q\^i + R\^j + S\^k))

⇒ \nabla.((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the dot product between these two vectors,

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(1)

Consider R.H.S

⇒ a\nabla.F1+b\nabla.F2

So,

\nabla.F1=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(M\^i + N\^j + P\^k)

⇒ \nabla.F1=\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z}

\nabla.F2=(\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z}).(Q\^i + R\^j + S\^k)

⇒ \nabla.F1=\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z}

Then,

a\nabla.F1+b\nabla.F2=a(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}+\frac{\partial P}{\partial z})+b(\frac{\partial Q}{\partial x}+\frac{\partial R}{\partial y}+\frac{\partial S}{\partial z})

⇒ \frac{\partial (aM+bQ)}{\partial x}+ \frac{\partial (aN+bR)}{\partial y}+\frac{\partial (aP+bS)}{\partial z} ...(2)

From (1) and (2),

\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2

2) Verifying the identity: \nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Consider L.H.S

⇒ \nabla\times(aF1+bF2)

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times(a(M\^i+N\^j+P\^k)+b(Q\^i+R\^j+S\^k))

⇒ (\^i\frac{\partial}{\partial x}+\^j \frac{\partial}{\partial y}+\^k\frac{\partial}{\partial z})\times ((aM+bQ)\^i+(aN+bR)\^j+(aP+bS)\^k)

Applying the cross product,

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y}) ...(3)

Consider R.H.S,

⇒ a\nabla\times F1+b\nabla\times F2

So,

a\nabla\times F1=a(\nabla\times (M\^i+N\^j+P\^k))

⇒ \^i(\frac{\partial aP\^k}{\partial y}- \frac{\partial aN\^j}{\partial z})+\^j(\frac{\partial aM\^i}{\partial z}-\frac{\partial aP\^k}{\partial x})+\^k(\frac{\partial aN\^j}{\partial x}-\frac{\partial aM\^i}{\partial y})

a\nabla\times F2=b(\nabla\times (Q\^i+R\^j+S\^k))

⇒ \^i(\frac{\partial bS\^k}{\partial y}- \frac{\partial bR\^j}{\partial z})+\^j(\frac{\partial bQ\^i}{\partial z}-\frac{\partial bS\^k}{\partial x})+\^k(\frac{\partial bR\^j}{\partial x}-\frac{\partial bQ\^i}{\partial y})

Then,

a\nabla\times F1+b\nabla\times F2 =

\^i(\^k\frac{\partial (aP+bS)}{\partial y}- \^j\frac{\partial (aN+bR)}{\partial z})+\^j(\^i\frac{\partial (aM+bQ)}{\partial z}-\^k\frac{\partial (aP+bS)}{\partial x})+\^k(\^j\frac{\partial (aN+bR)}{\partial x}-\^i\frac{\partial (aM+bQ)}{\partial y})

...(4)

Thus, from (3) and (4),

\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

Learn more about divergence and curl of a vector field here:

brainly.com/question/4608972

#SPJ4

Disclaimer: The given question on the portal is incomplete.

Question: Let F1 = M\^i + N\^j + P\^k and F2 = Q\^i + R\^j + S\^k be differential vector fields and let a and b arbitrary real constants. Verify the following identities.

1)\nabla.(aF1+bF2)=a\nabla.F1+b\nabla.F2\\2)\nabla\times(aF1+bF2)=a\nabla\times F1+b\nabla\times F2

8 0
1 year ago
I got 16/63 but i am not sure if its correct or not .
QveST [7]

Answer:

i think i got

sin x =16/65 not 16/63

3 0
2 years ago
Tim x: 3x(x-2) + 2(2-x)=0
olganol [36]

Answer:

Assuming this is the full problem.

3x^2-8x+4

Step-by-step explanation:

6 0
2 years ago
Thirty-six divided by six
Musya8 [376]

Answer:

6

Step-by-step explanation:

6 0
2 years ago
I need help it's so confusing!​
jasenka [17]
Try looking up the answer
5 0
3 years ago
Other questions:
  • Oliver uses the gcf and the distributive property to rewrite this summer 64+96
    9·1 answer
  • 7 break into 9 how many times​
    7·2 answers
  • Factor the sum of the terms as a product of the gcf and another sum 12+18
    15·1 answer
  • How to find x for this equation : 3x-3(x-1)=3
    8·1 answer
  • 200 centimeters = how many meters
    8·1 answer
  • If ​P(E)=0.55​, ​P(E or ​F)=0.65​, and​ P(E and ​F)=0.20​, find​ P(F).
    8·1 answer
  • Find the Slope
    8·1 answer
  • I need some help find the area of the shaded region and round to the nearest hundredth
    8·1 answer
  • What is the difference between-2 and -8
    5·1 answer
  • Which point represents the unit rate​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!