Answer: (E) 300 bq
Explanation:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is represented by 
Half life of Thallium-208 = 3.053 min
Thus after 9 minutes , three half lives will be passed, after ist half life, the activity would be reduced to half of original i.e.
, after second half life, the activity would be reduced to half of 1200 i.e.
, and after third half life, the activity would be reduced to half of 600 i.e.
,
Thus the activity 9 minutes later is 300 bq.
Answer:
E = 1.602v
Explanation:
Use the Nernst Equation => E(non-std) = E⁰(std) – (0.0592/n)logQc …
Zn⁰(s) => Zn⁺²(aq) + 2 eˉ
2Ag⁺(aq) + 2eˉ=> 2Ag⁰(s)
_____________________________
Zn⁰(s) + 2Ag⁺(aq) => Zn⁺²(aq) + 2Ag(s)
Given E⁰ = 1.562v
Qc = [Zn⁺²(aq)]/[Ag⁺]² = (1 x 10ˉ³)/(0.150)² = 0.044
E = E⁰ -(0.0592/n)logQc = 1.562v – (0.0592/2)log(0.044) = 1.602v
Correct Answer: The Sun heats the Earth unevenly; this heating pattern then causes convection currents in the atmosphere.
Answer:
10437calories
Explanation:
The following data were obtained from the question given:
M = 347.9g
C = 4.2J/g°C
T1 = 25°C
T2 = 55°C
ΔT = 55 — 25 = 30°C
Q =?
Q = MCΔT
Q = 347.9 x 4.2 x 30
Q = 43835.4J
Converting this to calories, we obtained the following:
4.2J = 1 calorie
43835.4J = 43835.4/ 4.2 = 10437calories