Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Answer is: a) ionization energy and electronegativity.
1) The ionization energy (Ei) is the minimum amount of energy required to remove the valence electron, when element lose electrons, oxidation number of element grows (oxidation process).
Barium, potassium and arsenic are metals (easily lost valence electrons), chlorine is nonmetal (easily gain electrons).
Alkaline metals (far left in Periodic table) have lowest ionizations energy and easy remove valence electrons (one electron), earth alkaline metals (next right to alkaline metals) have higher ionization energy than alkaline metals, because they have two valence electrons.
Nonmetals are far right in the main group and they have highest ionization energy, because they have many valence electrons.
2) Electronegativity (χ) is a chemical property that describes the tendency of an atom to attract a shared pair of electrons towards itself.
Atoms with higher electronegativity attracts more electrons towards it, electrons are closer to that atom.
Nonmetals hava higher electronegativity than metals and metalloids.
3) The atomic radius decreases across the periods because an increasing number of protons, because greater attraction between the protons and electrons.
Answer:
L× W×H
<h2> Please mark me as brainlist. </h2>
B. New atoms are formed as products.