We are given the molar mass of Molybdenum as 95.94 g/mol. Also, the chemical symbol for Molybdenum is Mo. This question is asking for the amount of molecules of molybdenum in a 150.0 g sample. However, since molybdenum is a metal and it is in the form of solid molybdenum, Mo (s), it is not actual a molecule. A molecule has one or more atom bonded together. We will instead be finding the amount of atoms of Molybdenum present in the sample. To do this we use Avogadro's number, which is the amount of atoms/molecules of a substance in 1 mole of that substance.
150.0 g Mo/ 95.94 g/mol = 1.563 moles of Mo
1.563 moles Mo x 6.022 x 10²³ atoms/mole = 9.415 x 10²³ atoms Mo
Therefore, there are 9.415 x 10²³ atoms of Molybdenum in 150.0 g.
When an acid is neutralized by a base, that means moles of H+ = moles of OH-
moles of H+ = 0.5 M * 0.025 L HCl = 0.0125 moles H+
moles of OH- should be equal to 0.0125 moles, so
0.0125 moles = (x) * 0.025 L NaOH
x is the concentration of NaOH, which we want to find.
x = 0.5 M
The correct answer is C) 0.5 M.
Answer:
CH3CH2CH2Cl
CH3CH2CH2CH2CH2SH
Br2
Explanation:
Dispersion forces increases with increase in relative molecular mass. The specie having the greater relative molecular mass definitely has greater dispersion forces. A rough estimation of the relative molecular masses of the species stated in the answer will reveal this fact.