Answer:
V₂ = 530.5 mL
Explanation:
Given data:
Initial temperature = 20.0°C
Final temperature = 40.0 °C
Final volume = 585 mL
Initial volume = ?
Solution:
Initial temperature = 20.0°C (20+273 = 293 K)
Final temperature = 40.0 °C (40+273 = 323 K)
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 585 mL × 293 K / 323 K
V₂ = 171405 mL.K / 323 K
V₂ = 530.5 mL
Co2
Explanation:
CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (l)
Answer:
Molarity = 0.4M
Explanation:
Molar mass of NaOH (M)= 40
m= 8g, V= 500ml=0.5L
n= m/M=[8/40]= 0.2mol
Applying
n= CV
0.2= C×0.5
C= 0.4M
the system is in constant temperature
so it follows Boyle's law
i.e.P1V1=P2P2
where P1=initial pressure=788 tour
P2=final pressure= ?
V1=initial volume=235 ml
V2=final volume=0.115 ml
Answer:
Niels Bohr The electron in a Hydrogen atoms can only circle the nucleus in certain paths or orbits.