so the investigator found the skid marks were 75 feet long hmmm what speed will that be?
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ d=75 \end{cases}\implies s=\sqrt{30(0.7)(75)}\implies s\approx 39.69~\frac{m}{h}](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20d%3D75%20%5Cend%7Bcases%7D%5Cimplies%20s%3D%5Csqrt%7B30%280.7%29%2875%29%7D%5Cimplies%20s%5Capprox%2039.69~%5Cfrac%7Bm%7D%7Bh%7D)
nope, the analysis shows that Charlie was going faster than 35 m/h.
now, assuming Charlie was indeed going at 35 m/h, then his skid marks would have been
![s=\sqrt{30fd}~~ \begin{cases} f=\stackrel{friction}{factor}\\ d=\stackrel{skid}{feet}\\[-0.5em] \hrulefill\\ f=\stackrel{dry~day}{0.7}\\ s=35 \end{cases}\implies 35=\sqrt{30(0.7)d} \\\\\\ 35^2=30(0.7)d\implies \cfrac{35^2}{30(0.7)}=d\implies 58~ft\approx d](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B30fd%7D~~%20%5Cbegin%7Bcases%7D%20f%3D%5Cstackrel%7Bfriction%7D%7Bfactor%7D%5C%5C%20d%3D%5Cstackrel%7Bskid%7D%7Bfeet%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20f%3D%5Cstackrel%7Bdry~day%7D%7B0.7%7D%5C%5C%20s%3D35%20%5Cend%7Bcases%7D%5Cimplies%2035%3D%5Csqrt%7B30%280.7%29d%7D%20%5C%5C%5C%5C%5C%5C%2035%5E2%3D30%280.7%29d%5Cimplies%20%5Ccfrac%7B35%5E2%7D%7B30%280.7%29%7D%3Dd%5Cimplies%2058~ft%5Capprox%20d)
35 because if you half the amount of salads he's eaten (seeing as he eats one burger for every two salads) then the extra one is the first salad in the cycle.
Answer:
2.4×10^6
Step-by-step explanation:
Put the numbers where the variables are and do the arithmetic. You can enter the numbers in scientific notation into your (scientific) calculator and have it show you the result in the same format.
r = (3.8×10^5)^2/(5.9×10^4) . . . . . denominator parentheses are required
Please note that in the above expression, parentheses are required around the denominator number. This is because it is a product of two numbers. In your pocket calculator or spreadsheet, you can enter that value as a single number (not a product). Parentheses are not required when you can do that.
r = (3.8²/5.9)×10^(5·2-4) ≈ 2.4×10^6
___
The "exact" value is a repeating decimal with a long repeat. We have rounded to 2 significant digits here because the input numbers have that number of significant digits.
Answer:
1, 4, 16, 64, 256, 1024, 4096, 16384
Step-by-step explanation:
Multiply by 4